Accredited by NBA \& NAAC with 'A' Grade Approved by AICTE Permanently affiliated to JNTUH

Program Name : B.Tech- Computer Science and Engineering
\title{ Name of the Course : COMPUTER ORIENTED STATISTICAL METHODS }
Course Code : COSM(MA2103BS)
Year\& Semester : II B.Tech., I SEM
Faculty Name
: P MAHENDRA VARMA

[NR21]

COURSE CONTENT

UNIT 1
PROBABILITY

P Mahendra Varma, Asst Professor

Definition:

P denotes a probability.
A, B and C are specific events.
$P(A)$ is the probability that an event A will occur.

Rule for computing probability of equal likely events

$P(A)=\frac{\text { the number of ways } A \text { can occur }}{\text { number of different simple events }}=\frac{s}{n}$

Example:

Suppose you toss 3 coins. What is the probability of getting exactly 2 heads?
Solution: Let A be the event for rolling exactly 2 heads. To compute $P(A)$ we need to know thetotal number of combinations of rolling three dice. There are 8 possible outcomes for the three coins. Of those 8 combinations there are 3 ways to get exactly two heads. So,

$$
P(A)=\frac{3}{8}=.375
$$

Definition:

A compound event is any event combining any two
simple events. The notation

$$
P(A \text { or } B)=P(\text { event } A \text { or event } B \text { occurs or they both occur })
$$

Rule:

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

where $P(A$ and $B)$ denotes the probability that A and B both occur at the same time.

Definition:

Events A and B are mutually exclusive if they cannot happen simultaneously.

Definition:

If A is an event then the compliment, A, consists of all the outcomes in which event A does NOT occur.

Rule for compliments

If A is an event then,

$$
P(A)=1-P(A) .
$$

Example

A six sided die is tossed. What is the prabability of NOT rolling a one?
Solution: Let A be the event of NOT rolling a one. Then A is the event of rolling a one. Since $P(A)=(1 / 6)$, the probabilty of not roling a one is $(5 / 6)(=1-P(A))$.

Conditional Probability

Definition:

The conditional probability of an event B after it is assumed that the event A has alreadyoccurred is denoted by $P(B \mid A)$.

Example:

Suppose you have 3 green dice and 2 red dice. You pick a die at random and role it. Let A be the event the die is green. Let B be the event that the top number is even and the die is green. What is $P(B)$? What is $P(B \mid A)$?

Solution: To compute $P(B)$ we notice that there are 5 dice with 6 faces each, for a total of 30 possible equal likely outcomes. There are 3 green dice with 3 even numbers each, giving a totalof 9 ways B can occur. Hence, $P(B)=9 / 30=.3$.

To find $P(B \mid A)$ we can assume that the die that was rolled is green. The probability of getting aneven role is ($1 / 2$), since there are 3 even numbers on the die out of 6 possible choices.

Definition:

Two events A and B are independent if the occurrence of one does $N O T$ affect the probability ofthe occurrence of the other. If A and B are not independent, they are said to be dependent.

Rule:

Given events A and $B, P(A$ and $B)=P(A) \cdot P(B \mid A)$ and $P(B \mid A)$

$$
=\frac{P(A \text { and } B)}{P(A)}
$$

RANDOM VARIABLES

Random Variable

A Random Variable X is a real valued function from sample space S to a real number R . (or)
A Random Variable X is a real number which is determined by the outcomes of the random experiment.
Eg:1.Tosssing 2 coins simultaneously
Sample space $=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
Let the random variable be getting number of heads then

$$
X(S)=\{0,1,2\} .
$$

2.Sum of the two numbers on throwing 2 dice

$$
X(S)=\{2,3,4,5,6,7,8,9,10,11,12\}
$$

Types of Random Variables:
1.Discrete Random Variables : A Random Variable X is said to be discrete if it takes only the values of the set $\{0,1,2 \ldots . . \mathrm{n}\}$.
Eg:1.Tosssing a coin, throwing a dice, number of defective items in a bag.
2.Continuous Random Variables: A Random Variable X which takes all possible values in a given interval of domain.
Eg: Heights, weights of students in a class.

Discrete Probability Distribution:

Let x is a Discrete Random Variable with possible outcomes $x_{1}, x_{2}, x_{3} \ldots . x_{\mathrm{n}}$ having probabilities $p\left(x_{\mathrm{i}}\right)$ for $i=1,2 \ldots n$.If $p\left(x_{\mathrm{i}}\right)>0$ and $\sum_{\mathrm{i}=1}^{\mathrm{n}} p\left(x_{\mathrm{i}}\right)=1$ then the function $p\left(x_{\mathrm{i}}\right)$ is called Probability mass function of a random variable X and $\left\{x_{\mathrm{i}}, p\left(x_{\mathrm{i}}\right)\right\}$ for $i=1,2 \ldots n$ is called Discrete Probability Distribution.
Eg: Tossing 2 coins simultaneously
Sample space $=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
Let the random variable be getting number of heads then

$$
X(S)=\{0,1,2\} .
$$

Probability of getting no heads $=\frac{1}{4}$ Probability of getting 1 head $=\frac{1}{2}$
Probability of getting 2 heads $=\frac{1}{4}$
\therefore Discrete Probability Distribution is

x_{i}	0	1	2
$p\left(x_{\mathrm{i}}\right)$	1	$\frac{1}{2}$	1
	$\frac{1}{4}$	2	

Cumulative Distribution function is given by $F(x)=p[X \leq x]=\sum_{\mathrm{i}=0}^{\mathrm{x}} p\left(x_{\mathrm{i}}\right)$.
Properties of Cumulative Distribution function:

1. $P[a<x<b]=F(b)-F(a)-P[X=b]$
2. $P[a \leq x \leq b]=F(b)-F(a)-P[X=a]$
3. $P[a<x \leq b]=F(b)-F(a)$
4. $P[a \leq x<b]=F(b)-F(a)-P[X=b]+P[X=a]$

Mean: The meanof the discrete Probability Distribution is defined as
$\mu=\frac{\sum_{i=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \mathrm{p}\left(\mathrm{x}_{\mathrm{j}}\right)}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}\left(x_{\mathrm{i}}\right)}=\sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}} p\left(x_{\mathrm{i}}\right) \quad$ since $\sum_{\mathrm{i}=1}^{\mathrm{n}} p\left(x_{\mathrm{i}}\right)=1$
Expectation:The Expectationof the discrete Probability Distribution is defined as $\mathrm{E}(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}} p\left(x_{\mathrm{i}}\right)$

In general, $E(g(x))=\sum_{\mathrm{i}=1}^{\mathrm{n}} g\left(x_{\mathrm{i}}\right) p\left(x_{\mathrm{i}}\right)$
Properties:

1) $E(X)=\mu$
2) $E(X)=k E(X)$
3) $E(X+k)=E(X)+k$
4)) $E(a X \pm b)=a E(X) \pm b$

Variance: The variance of the discrete Probability Distribution is defined as

$$
\operatorname{Var}(X)=V(X)=E[X-E(X)]^{2}
$$

$\therefore V(X)=E[X]^{2}-[E(X)]^{2}=\sum x_{\mathrm{i}}^{2} p_{\mathrm{i}}-\mu^{2}$

Properties:

1) $V(c)=0$ where c is a constant
2) $V(k X)=k^{2} V(X)$
3) $V(X+k)=V(X)$
4) $V(a X \pm b)=a^{2} V(X)$

Problems

1. If $\mathbf{3}$ cars are selected randomly from $\mathbf{6}$ cars having $\mathbf{2}$ defective cars.
a)Find the Probability distribution of defective cars.
b) Find the Expected number of defective cars.

Sol: Number of ways to select 3 cars from 6 cars $=6 c_{3}$
Let random variable $X(S)=$ Number of defective cars $=\{0,1,2\}$
Probability ofnon defective cars $=\frac{4_{\mathrm{c}_{3}} 2_{c_{0}}}{6_{\mathrm{c} 3}}=\frac{1}{5}$
Probability of one defective cars $=\frac{{ }_{4}{ }_{4}{ }^{c_{2}} 2_{c_{1}}}{{ }_{6}}=\frac{3}{5}$
Probability of two defective cars $=\frac{4_{c_{1} c_{2}}^{6_{c}}}{6_{\mathrm{c}_{3}}}=\frac{1}{5}$
Clearly , $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)>0$ and $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=1$
Probability distribution of defective cars is

x_{i}	0	1	2
$p\left(x_{\mathrm{i}}\right)$	1	3	1
	5	5	5

Expected number of defective cars $=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=0\left({ }_{5}^{1}\right)+1\left({ }_{5}^{3}\right)+2\binom{1}{5}=1$
2.Let X be a random variable of sum of two numbers in throwing two fair dice. Find the probability distribution of X, mean, variance.
Sol: Sample space of throwing two dices is
$\mathrm{S}=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
$\therefore n(S)=36$.
Let $\mathrm{X}=$ Sum of two numbers in throwing two dice $=\{2,3,4,5,6,7,8,9,10,11,12\}$

Clearly, $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)>0$ and $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=1$
Probability distribution is given by

x_{i}	2	3	4	5	6	7	8	9	10	11	12
$\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

$$
\begin{array}{r}
\text { Mean }=\mu=\Sigma \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{xip}_{\mathrm{i}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=2\left(\frac{1}{36}\right)+3\left(\frac{2}{36}\right)+4\left(\frac{3}{36}\right)+5\left(\frac{4}{36}\right)+6\left(\frac{5}{36}\right)+7\left(\frac{6}{36}\right)+ \\
8\left(\frac{5}{36}\right)+9\left(\frac{4}{36}\right)+10\left(\frac{3}{36}\right)+11\left(\frac{2}{36}\right)+12\left(\frac{1}{36}\right)
\end{array}
$$

$=7$.
Variance $=\mathrm{V}(\mathrm{X})=\sum \mathrm{xi}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}-\mu^{2}$
$=4\left(\frac{1}{36}\right)+9\left(\frac{2}{36}\right)+16\left(\frac{3}{36}\right)+25\left(\frac{4}{36}\right)+36\left(\frac{5}{36}\right)+49\left(\frac{6}{36}\right)+64\left(\frac{5}{36}\right)+81\left(\frac{4}{36}\right)+$ $100\left(\frac{3}{36}\right)+121\left(\frac{2}{36}\right)+144\left(\frac{1}{36}\right)-49=5.83$
3. Let X be a random variable of maximum of two numbers in throwing two fair dice simultaneously. Find the
a) probability distribution of X
b)mean
c) variance
d) $\mathbf{P}(1<\mathbf{x}<4)$
e) $\mathbf{P}(2 \leq x \leq 4)$

Sol: Sample space of throwing two dices $=S=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$

$$
\begin{gathered}
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}
\end{gathered}
$$

$\therefore n(S)=36$.
Let $\mathrm{X}=$ Maximum of two numbers in throwing two dice $=\{1,2,3,4,5,6$,

Clearly, $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)>0$ and $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=1$
Probability distribution is given by

x_{i}	1	2	3	4	5	6
$p\left(x_{\mathrm{i}}\right)$	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

$$
\begin{aligned}
\text { Mean }=\mu & =\Sigma{\underset{i=1}{n} \mathrm{x}_{\mathrm{i}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=1\binom{1}{36}+2\binom{3}{36}+3\binom{5}{36}+4\binom{7}{36}+5\binom{9}{36}+6\binom{11}{36}}=4.47 .
\end{aligned}
$$

Variance $=\mathrm{V}(\mathrm{X})=\sum \mathrm{xi}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}-\mu^{2}$

$$
\begin{aligned}
& =1\left(\frac{1}{36}\right)+4\left(\frac{3}{36}\right)+9\left(\frac{5}{36}\right)+16\left(\frac{7}{36}\right)+25\left(\frac{9}{36}\right)+36\left(\frac{11}{36}\right) \\
& \therefore \text { Variance }=1.99 \text {. }
\end{aligned}
$$

4.A random variable X has the following probability function

$\boldsymbol{x}_{\boldsymbol{i}}$	$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\boldsymbol{p}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	\mathbf{k}	$\mathbf{0 . 1}$	\mathbf{k}	$\mathbf{0 . 2}$	$\mathbf{2 k}$	$\mathbf{0 . 4}$	$\mathbf{2 k}$

Find k,mean, variance.
Sol: We know that $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=1$
i.e $\mathrm{k}+0.1+\mathrm{k}+0.2+2 \mathrm{k}+0.4+2 \mathrm{k}=1$
i.e $6 \mathrm{k}+0.7=1 \quad \therefore k=0.05$

$$
\text { Mean }=\mu=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{k}(-3)+0.1(-2)+\mathrm{k}(-1)+2 \mathrm{k}(1)+2(0.4)+3(2 \mathrm{k})=0.8
$$

```
Variance \(=V(X)=\sum x_{i}{ }^{2} p_{i}-\mu^{2}\)
    \(=\mathrm{k}(-3)^{2}+0.1^{2}(-2)+\mathrm{k}(-1)^{2}+2 \mathrm{k}(1)+4(0.4)+9(2 \mathrm{k})\)
```

 \(\therefore\) Variance \(=2.86\).
 5.A random variable X has the following probability distribution

\mathbf{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{P}(\mathbf{x})$	$\mathbf{0}$	\mathbf{k}	$\mathbf{2 k}$	$\mathbf{2 k}$	$\mathbf{3 k}$	$\boldsymbol{k}^{\mathbf{2}}$	$\mathbf{2 k}$	$\mathbf{7} \boldsymbol{k}^{\mathbf{2}}+\boldsymbol{k}$

Determine i) kii) Mean iii) Variance.
Sol: Given probability distribution of a random variable X is

x	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0	k	2 k	2 k	3 k	k^{2}	$2 k^{2}$	$7 k^{2}+k$

i) Since total probability of the distribution is unity i.e, $\sum_{\mathrm{i}=1}^{\mathrm{n}} P_{\mathrm{i}}=1$

We have,

$$
\begin{gathered}
0+k+2 k+2 k+3 k+k^{2}+2 k^{2}+7 k^{2}+k=1 \\
10 k^{2}+9 k-1=0 \\
k=\frac{1}{10},-1
\end{gathered}
$$

$$
\therefore k=0.1\left(\text { since } k>0 \text { being } P_{\mathrm{i}}>0\right)
$$

ii) \quad Mean $=\mu=\sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}} P_{\mathrm{i}}$

$$
\begin{aligned}
& =0(0)+1(k)+2(2 k)+3(2 k)+4(3 k)+5\left(k^{2}\right)+6\left(2 k^{2}\right)+7\left(7 k^{2}+k\right) \\
& =66 k^{2}+30 k \\
& =66(0.01)+30(0.1) \\
& =3.66
\end{aligned}
$$

$$
\therefore \mu=3.66
$$

iii) Variance $=\sigma^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}}{ }^{2} p_{\mathrm{i}}-\mu^{2}$

$$
\begin{aligned}
& =0^{2}(0)+1^{2}(k)+2^{2}(2 k)+3^{2}(2 k)+4^{2}(3 k)+5^{2}\left(k^{2}\right)+6^{2}\left(2 k^{2}\right)+ \\
& \quad 72\left(7 k^{2}+k\right)-3.66^{2} \\
& =440 k^{2}+124 k-3.66^{2} \\
& =440(0.01)+124(0.1)-3.66^{2} \\
& =16.8-3.66^{2}=3.4044
\end{aligned}
$$

$$
\therefore \sigma^{2}=3.4044
$$

6. A random variable X has the following probability distribution

\mathbf{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{P}(\mathbf{x})$	\mathbf{k}	$\mathbf{3 k}$	$\mathbf{5 k}$	$\mathbf{7 k}$	$\mathbf{9 k}$	$\mathbf{1 1 k}$

Determine i) k ii) $\mathrm{P}(1 \leq x \leq 5)$ iii) $\mathbf{P}(\mathrm{x}>3)$
Sol: Given probability distribution of a random variable X is

x	1	2	3	4	5	6
$\mathrm{P}(\mathrm{x})$	k	3 k	5 k	7 k	9 k	11 k

(i)Since total probability of the distribution is unity i.e, $\sum_{\mathrm{i}=1}^{\mathrm{n}} P_{\mathrm{i}}=1$

We have, $k+3 k+5 k+7 k+9 k+11 k=1 \Longrightarrow k=\frac{1}{36}$
ii) $\mathrm{P}(1 \leq x \leq 5)=P(1)+P(2)+P(3)+P(4)+P(5)$

$$
\begin{aligned}
& =k+3 k+5 k+7 k+9 k \\
& =25 k \quad=0.694
\end{aligned}
$$

iii) $P(x>3)=P(4)+P(5)+P(6)=7 k+9 k+11 k=27 k=0.75$

7. A Variate has the following probability distribution

\mathbf{x}	$\mathbf{- 3}$	$\mathbf{6}$	$\mathbf{9}$
$\mathbf{P}(\mathbf{x})$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
	$\mathbf{6}$	$\mathbf{2}$	$\mathbf{3}$

Find $E(X), E\left(X^{2}\right)$ and hence evaluate $E\left((2 X+1)^{2}\right)$.
Sol: Given probability distribution of r.v X is

x	-3	6	9
$\mathrm{P}(\mathrm{x})$	1	1	1
	$\mathbf{6}$	$\frac{1}{2}$	$\frac{3}{3}$

i) $\quad E(X)=\sum_{i=1}^{\mathrm{n}} x_{\mathrm{i}} P_{\mathrm{i}}$
$=\frac{1}{6}(-3)+\frac{1}{2}(6)+\frac{1}{3}(9)$
$=\frac{11}{2}$
ii) $\quad \bar{E}\left(\bar{X}^{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}}^{2} P \mathrm{i}={ }_{\frac{1}{6}}^{1}(-3)^{2}+\frac{1}{2}\left(6^{2}\right)+\frac{1}{3}\left(9^{2}\right)$

$$
=\frac{93}{2}=46.5 .
$$

iii)

$$
\begin{aligned}
E(2 X+1)^{2}= & E\left(4 X^{2}+4 \mathrm{X}+1\right) \\
& =4 \mathrm{E}\left(X^{2}\right)+4 \mathrm{E}(X)+1 \\
& =4(46.5)+4(5.5)+1 \\
& =209 .
\end{aligned}
$$

8. Find the expectation of number of tosses require when a coin is tossed until head appears or five tails occurs.
Sol: Let the random variable X be 'number of tosses until head or five tail occurs'
then $X=\{1,2,3,4,5\}$
Probability of happening of 1 toss $=\mathrm{P}$ (Getting head in first toss) $=\mathrm{P}(\mathrm{H})=\frac{1}{2}$.
Probability of happening of 2 tosses $=P(T H)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$.
Probability of happening of 3 tosses $=\mathrm{P}(\mathrm{TTH})=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}$
Probability of happening of 4 tosses $=\mathrm{P}(\mathrm{TTTH})=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{16}$
Similarly,we have
Probability of happening of 5 tosses $=P$ (TTTTH OR TTTTT) $=\frac{1}{32}+\frac{1}{32}=\frac{1}{16}$.
Probability distribution of X is

x	1	2	3	4	5
$\mathrm{P}(\mathrm{x})$	$\frac{1}{2}$	1	1	1	1
	$\frac{2}{2}$	4	$\frac{8}{16}$	16	$\frac{1}{16}$

Expected of number of tosses require when coin is tossed until head appears or five tails occurs is

$$
\begin{gathered}
E(X)=\sum x_{\mathrm{i}} p_{\mathrm{i}} \\
=\frac{1}{2}(1)+\frac{1}{4}(2)+\frac{1}{8}(3)+\frac{1}{16}(4)+\frac{1}{16}(5)=1.9375 \cong 2 \text { tosses. }
\end{gathered}
$$

TUTORIAL QUESTIONS

1) For the following bivariate, find,

X / Y	1	2	3	4
1	0.1	0	0.2	0.1
2	0.05	0.12	0.08	0.01
3	0.1	0.05	0.1	0.09

(i) $\mathrm{P}(\mathrm{X} \leq 2, \mathrm{Y}=2)$
(ii) $\mathrm{FX}_{\mathrm{X}}(2)$
(iii) $\mathrm{P}(\mathrm{Y}=3)$
(iv) $\mathrm{P}(\mathrm{X}<3, \mathrm{Y} \leq 4)$ and (v) $\mathrm{FY}(3)$

2a) A random variable X has following P.D. Find (i) k (ii) $P(X>6)$ (iii) Find ' c ' if $P(X \leq c)>\frac{1}{2}$

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	0	k	2 k	2 k	3 k	k^{2}	$2 \mathrm{k}^{2}$	$7 \mathrm{k}^{2}+\mathrm{k}$

b) If $\mathrm{F}(\mathrm{x})$ is the distribution function of X given by

$$
0, x \leq 1
$$

$$
\mathrm{F}(\mathrm{x})=\left\{\mathrm{k}(\mathrm{x}-1)^{4}, 1<x \leq 3\right\} \text { Find (i) } \mathrm{f}(\mathrm{x}) \text { (ii) } \mathrm{k} \text { (iii) mean }
$$

$$
1, x>3
$$

$$
c x y, 1<x<3,2<y<4
$$

3) The joint density function given by $f_{\mathrm{xy}}(x, y)=\{\quad 0$, otherwise $\}$

Find (i) c (ii) marginal density functions (iii) conditional density functions
(iv) S.T X ,Y are independent

4a) A sample of 4 items is selected at random from a box containing 12 items of which 5 are defective. Find the expected number of defective items.
b) If the p.d.f is $f(x)=\frac{\mathrm{K}}{1+\mathrm{x}^{2}},-\infty<\mathrm{x}<\infty$ Find (i) K (ii) Probability distribution function

$$
k x e^{-\alpha \mathrm{x}}, x \geq 0, \alpha>0
$$

5a) A continuous r.v has the p.d.f $f(x)=\{\quad 0$, elsewhere $\}$ Determine (i)K, (ii) mean (iii)variance
b) A random sample with replacement of size 2 is taken from $S=\{1,2,3\}$. Let X denote sum of 2 no. s taken.(i)Write probability distribution (ii) find mean

ASSIGNMENT QUESTIONS

1.If the p.d.f of a r.vxis given by $f(x)=\left\{\begin{array}{l}k\left(1-x^{2}\right), 0<x<1\end{array}\right.$
find i) k

$$
0 \text { if } x \leq 1
$$

2.If $\mathrm{F}(\mathrm{x})$ is the distribution function of x is given by $F(X)=\left\{k(x-1)^{4}\right.$ if $1<x \leq 3$

$$
1 \text { if } x>3
$$

Determine i) $f(x)$ ii) k iii)mean
3. If X is a continuous $\mathrm{r} . \mathrm{v}$ and $\mathrm{Y}=\mathrm{kX}+\mathrm{c}$ prove that $\mathrm{E}(\mathrm{Y})=\mathrm{kE}(\mathrm{X})+\mathrm{y}$ and $\mathrm{V}(\mathrm{Y})=k^{2} V(X)$, where V stands for Variance
4. A random variable has the following probability function

x	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0	K	2 K	2 K	3 K	$\mathrm{~K}^{2}$	$2 \mathrm{~K}^{2}$	$7 \mathrm{~K}^{2}+\mathrm{K}$

Determine i) K ii) Mean iii)Variance iv) $\mathrm{P}(2<\mathrm{X}<6)$.
5. The joint density function given by $f_{\mathrm{xy}}(x, y)=\left\{\begin{array}{c}c x y, \\ 1<x<3,2<y<4 \\ 0, \text { otherwise }\end{array}\right.$

Find (i) c (ii) marginal density functions (iii) conditional density functions
(ii) S.T X ,Y are independent

UNIT 2

EXPECTATION AND DISCRETE

 DISTRIBUTIONS
PROBABILITY DISTRIBUTIONS

Continuous Probability distribution:

Let X be a continuous random variable taking values on the interval (a, b). A function $\mathrm{f}(\mathrm{x})$ is said to be the Probability density function of x if
i) $\mathrm{f}(\mathrm{x})>0 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$
ii) Total area under the probability curve is 1i. e, $\int_{d}^{b} f(x) d x=1$.
iii) For two distinct numbers ' c ' and ' d ' in (a, b) is given by $\mathrm{P}(\mathrm{c}<x<d)=$ Area under the probability curve between ordinates $x=c$ and $x=d i$. e $\int_{c}^{d} f(x) d x$.

Note: $\mathrm{P}(\mathrm{c}<x<d)=\mathrm{P}(\mathrm{c} \leq \mathrm{x} \leq \mathrm{d})=\mathrm{P}(\mathrm{c} \leq \mathrm{x}<d)=\mathrm{P}(\mathrm{c}<x \leq d)$
Cumulative distribution function of $f(x)$ is given by
$\int_{-\infty}^{x} f(x) d x$ i.e, $f(x)=\frac{d}{d x} F(x)$
Mean: The meanof the continuous Probability Distribution is defined as

$$
\mu=\boldsymbol{f}_{-\infty} x f(x) d x .
$$

Expectation:The Expectationof the continuous Probability Distribution is defined as $E(X)=\int_{-\infty}^{\infty} x f(x) d x$.
In general, $E(g(x))=\int_{-\infty}^{\infty} g(x) f(x) d x$.

Properties:

1) $E(X)=\mu$
2) $E(X)=k E(X)$
3) $E(X+k)=E(X)+k$
4)) $E(a X \pm b)=a E(X) \pm b$

Variance: The variance of the Continuous Probability Distribution is defined as

Properties:

1) $V(c)=0$ where c is a constant
2) $V(k X)=k^{2} V(X)$
3) $V(X+k)=V(X)$
4) $V(a X \pm b)=a^{2} V(X)$

Mean Deviation: Mean deviation of continuous probability distribution function is defined

$$
\text { as M.D }=\int_{-\infty}^{\infty}|x-\mu| f(x) d x .
$$

Median: Median is the point which divides the entire distribution in to two equal parts. In case of continuous distribution, median is the point which divides the total area in to two equal parts i.e., $\int_{a}^{M} f(x) d x=\int_{M}^{b} f(x) d x=\frac{1}{2} \forall x \in(a, b)$.
Mode: Mode is the value of x for which $\mathrm{f}(\mathrm{x})$ is maximum.
i.ef $(\mathrm{x})=0$ and $\mathrm{f}^{\prime \prime}(\mathrm{x})<0$ for $\mathrm{x} \in(\mathrm{a}, \mathrm{b})$

Problems

1.If the probability density function $f(x)=\frac{k}{1+x^{2}} \quad-\infty<x<\infty$. Find the value of ' k ' and probability distribution function off(x).
Sol: Since total area under the probability curve is 1 i. e, $\int_{d}^{b} f(x) d x=1$.

P Mahendra Varma, Asst Professor

$$
\begin{gathered}
\boldsymbol{f}_{-\infty}^{\infty} \frac{\mathrm{k}}{1+\mathrm{x}^{2}} \mathrm{dx}=1 . \\
2 \mathrm{k}\left(\tan ^{-1} \mathrm{x}\right){ }_{0}^{\infty}=1 \\
2 \mathrm{k}\left(\tan ^{-1} \infty-\tan ^{-1} 0\right)=1 \\
\therefore \mathrm{k}=\frac{1}{\pi}
\end{gathered}
$$

Cumulative distribution function of $f(x)$ is given by

$$
\boldsymbol{f}_{-\infty}^{x} f(x) d x=f_{-\infty}^{x} \frac{\mathbf{k}}{\mathbf{1}+x^{2}} d x=\frac{1}{\pi}\left(\tan ^{-1} x\right)_{-\infty}^{x}=\frac{1 \pi}{\pi}\left[\frac{\pi}{2}+\left(\tan ^{-1} x\right)\right] .
$$

2. If the probability density function $f(x)=c e^{-|x|}-\infty<x<\infty$.

Find the value of ' c ', mean and variance.
Sol: Since total area under the probability curve is 1 i.e, ${\underset{\sim}{a}}_{\mathrm{b}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=1$.

$$
\begin{gathered}
\mathbf{f}_{-\infty}^{\infty} \mathbf{c e} \mathbf{e}^{-|x| d x}=1 \\
2 \boldsymbol{f}_{0}^{\infty} \mathbf{c e}^{-\mathrm{x}} \mathrm{dx}=1 \\
2 \mathrm{c}\left(\frac{\mathrm{e}^{-\mathrm{x}}}{-1}\right)_{0}^{\infty}=1 \\
\therefore \mathrm{c}=\frac{1}{2}
\end{gathered}
$$

Mean, $\mu=f_{-\infty}^{\infty} x f(x) d x={ }_{\frac{1}{2}}^{1} f_{-\infty}^{\infty} x e^{-|x|} d x=0$ since $x e^{-|x|}$ is an odd function.
Variance $=V(X)$

$$
\begin{aligned}
& =f_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2} \\
& =\frac{1}{2} f_{-\infty}^{\infty} x^{2} \mathbf{e}^{-|x|} d x \\
& =\frac{1}{2} f_{0}^{\infty} 2 x^{2} \mathbf{e}^{-x} d x=\left[x^{2}\left(-\mathbf{e}^{-x}\right)-2 x\left(\mathbf{e}^{-x}\right)+2\left(-\mathbf{e}^{-x}\right)\right]_{0}^{\infty}=2
\end{aligned}
$$

3. If the probability density function $f(x)=\left\{\frac{\operatorname{sinx}}{2}\right.$ 0, otherwise \quad, if $\mathbf{0} \leq \mathbf{x} \leq \pi \quad$.

Find mean, median, mode andP($0<x<\frac{\pi}{2}$).
Sol: Mean $=\mu={\underset{-\infty}{\infty}}_{\infty}^{\infty} \mathrm{xf}(\mathrm{x}) \mathrm{dx}={ }_{\frac{1}{2}}^{1} \mathrm{f}_{0}^{\pi} \mathrm{x} \frac{\sin \mathrm{x}}{2} \mathrm{dx}={ }_{\frac{1}{2}}^{1}[-\mathrm{x} \cos \mathrm{x}+\sin \mathrm{x}]{ }_{0}^{\pi}={ }_{\frac{\pi}{2}}^{\pi}$.
Let M be the Median then

$$
\begin{aligned}
& \boldsymbol{f}_{0}^{M} f(x) d x=\boldsymbol{f}_{M}^{\pi} f(x) d x=\frac{1}{2} 6 x \in(-\infty, \infty) \\
& \boldsymbol{f}_{0}^{M} \frac{\sin x}{2} d x=f_{M}^{\pi} \frac{\sin x}{2} d x=\frac{1}{2} 6 x \in(-\infty, \infty) \\
& \text { Considerf }{ }_{M}^{\pi} \frac{\sin x}{2} \mathrm{dx}^{0}={ }_{2}^{0}{ }_{2}^{1} \text { then }(-\cos x){ }_{M}^{\pi} \\
& \therefore \mathrm{M}=\frac{\pi}{2} \\
& \text { Since } f(x)=\left\{\begin{array}{c}
\frac{\sin x}{2} \\
0, \text { otherwise }
\end{array} \text { if } 0 \leq x \leq \pi\right.
\end{aligned}
$$

To find maximum, we have $\mathrm{f}^{\prime}(\mathrm{x})=0$
i.e. $\cos x=0$ implies that $x=\frac{\pi}{2}$
and $\mathrm{f}^{\prime \prime}(\mathrm{x})=-\frac{\sin \mathrm{x}}{2}$ which is less than 0 at $\mathrm{x}=\frac{\pi}{2}$
\therefore Mode $=\frac{\pi}{2}$.

4.If the distributed function is given by

$$
0 \text { if } x \leq 1
$$

$$
\begin{aligned}
& F(x)=\left\{k(x-1)^{4} \text { if } 1 \leq x \leq 3\right. \\
& 1 \text { if } x>3
\end{aligned}
$$

Find $k, f(x)$, mean.
Sol: Cumulative distribution function of $f(x)$ is given by
$f_{-\infty}^{x} f(x) d x \quad$ i.e, $f(x)=\frac{d}{d x} F(x$
0 if $x \leq 1$
i.e, $f(x)=\left\{4 k(x-1)^{3}\right.$ if $1 \leq x \leq 3$

0 if $\mathrm{x}>3$
Since total area under the probability curve is 1i. e, $f_{a}^{b} f(x) d x=1$

$$
\begin{aligned}
& \text { f } 4 \mathrm{k}(\mathrm{x}-1)^{3} \mathrm{dx}=1 \\
& {\left[k(x-1)^{4}\right]_{1}^{3}=1} \\
& \therefore \mathrm{k}=\frac{1}{16} \\
& \therefore \mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
1 \\
\frac{1}{4}(\mathrm{x}-1)^{3}
\end{array} \text { if } 1 \leq \mathrm{x} \leq 3\right. \\
& \text { Mean }=\mu=f_{-\infty}^{\infty} x f(x) d x={ }_{-}^{1} f^{3} x(x-1)^{3} d x=19.6 .
\end{aligned}
$$

5.X is a continuous r.v with probability density function given by

$$
f(x)= \begin{cases}k x & 0 \leq x \leq 2 \\ 2 k & 2 \leq x \leq 4 \\ -k x+6 k & 4 \leq x \leq 6\end{cases}
$$

Find i) k ii) Mean of \mathbf{X}

Sol: Given probability density of a random variable X is

$$
f(x)= \begin{cases}k x & 0 \leq x \leq 2 \\ 2 k & 2 \leq x \leq 4 \\ -k x+6 k & 4 \leq x \leq 6\end{cases}
$$

i) Since total probability of the distribution is unity i.e, $\mathrm{f}_{-\infty}^{\infty} f(x) d x=1$

We have,

$$
\begin{gathered}
\mathbf{f}_{0}^{2} f(x) d x+f_{2}^{4} f(x) d x f_{4}^{6} f(x) d x=1 \\
\mathbf{f}_{0}^{2}(k x) d x+\mathbf{f}_{2}^{4} 2 k d x \mathbf{f}^{6}(-k x+6 k) d x=1 \\
\left(k_{2}^{x^{2}}\right)_{0}^{2}+(k x)_{2}^{4}+\left(-k \frac{x^{2}}{2}+6 k x\right)_{4}^{6}=1
\end{gathered}
$$

$$
\begin{gathered}
=\mathrm{f}_{0}^{2}\left(k x^{2}\right) d x+\mathrm{f}_{2}^{4} 2 k x d x \mathrm{f}_{4}^{\mathrm{f}^{2}}(-k x+6 k) x d x \\
=\left(k_{\overline{\mathrm{x}^{3}}}^{3}\right)_{0}^{2}+\left(2 k_{2}^{\mathrm{x}^{2}}\right)_{2}^{4}+\left(-k_{\frac{\mathrm{x}^{3}}{3}}^{2}+6 k_{2}^{\mathrm{x}^{2}}\right)_{4}^{6} \\
=3 .
\end{gathered}
$$

7.The diameter of ban electric cable assumed to be a continuous r.v with p.d.f

$$
f(x)=k x(1-x) \quad 0 \leq x \leq 1
$$

Find i)k ii)b such that $\mathbf{P}(\mathbf{x}<\mathrm{b})=\mathbf{P}(\mathrm{x}>\mathrm{b})$.
Sol: Given probability density function of a random variable X is

$$
f(x)=k x(1-x) \quad 0 \leq x \leq 1
$$

(i) Since total probability of the distribution is unity i.e, $\mathrm{f}_{-\infty} f(x) d x=1$

$$
\begin{aligned}
& \text { We have } \mathrm{f}_{0}^{1} k x(1-x) d x=1 \\
& \qquad\left(k \frac{x^{2}}{2}-k \frac{x^{3}}{3}\right)_{0}^{1}=1 \text { 回 } k=\frac{1}{6}
\end{aligned}
$$

(ii) Given that $\mathrm{P}(\mathrm{x}<\mathrm{b})=\mathrm{P}(\mathrm{x}>\mathrm{b})$
$\mathrm{f}_{0}^{\mathrm{b}} f(x) d x=\underset{\mathrm{f}}{\mathrm{f}} f(x) d x \Rightarrow \underset{0}{\mathrm{f}} k x(1-x) d x=\mathrm{f}_{\mathrm{b}}^{1} k x(1-x) d x$

$$
\left.\left(k \frac{x^{2}}{2}-k \frac{x^{3}}{3}\right)^{\mathrm{b}}=k \frac{x^{2}}{2}-k \frac{x^{3}}{3}\right)^{1}
$$

$$
6 b^{2}-2 b^{3}-1=0
$$

$$
\frac{b^{2}}{\frac{b^{3}}{3}}-\frac{b^{3}}{3}=\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{b^{2}}{2}-\frac{b^{3}}{3}\right)^{\mathrm{b}}
$$

Solving above equation, we get
$\mathrm{b}=0.5$ (by neglecting other roots which do not belong to $(0,1)$).

Multiple Random Variables

Discrete two-dimensional random variable:
Joint probability mass function is defined as $f(x, y)=P\left(X=x_{i}, Y=y_{i}\right)$
Joint probability distribution function is defined as
$\operatorname{Fixy}^{(\mathrm{x}, \mathrm{y})}=\mathrm{P}\left(\mathrm{X}<\mathrm{xi}_{\mathrm{i}}, \mathrm{Y}<\mathrm{y}_{\mathrm{i}}\right)=\sum_{<\mathrm{x}} \sum_{<y} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$
Marginal probability mass functions of X and Y are defined as

$$
\begin{aligned}
& P\left(X=x_{i}\right)=p\left(x_{i}\right)=\sum_{j} p\left(x_{i}, y_{i}\right) \\
& P\left(Y=y_{j}\right)=p\left(y_{j}\right)=\sum p\left(x_{i}, y_{i}\right)
\end{aligned}
$$

Continuous two-dimensional random variable:

Joint probability density function is defined as

$$
f_{x y}(x, y)=P(x \leq X \leq x+d x, y \leq Y \leq y+d y)
$$

and $f_{-\infty}^{\infty} f_{-\infty}^{\infty} f_{X Y}(x, y) d x d y=1$
Joint probability distribution function is defined as
$\mathrm{F}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})=\mathrm{P}\left(\mathrm{X}<\mathrm{x}_{\mathrm{i}}, \mathrm{Y}<\mathrm{y}_{\mathrm{i}}\right)=\underset{-\infty}{ } \mathrm{f}_{-\infty} \underset{\mathrm{XY}}{\mathrm{f}}(\mathrm{x}, \mathrm{y}) \mathrm{dxdy}$
$\operatorname{andfxY}(x, y)=\frac{6^{2}}{6 x 6 y}[F x Y(x, y)]$
Marginal probability density functions of $\mathbf{X i s}$ defined as

$$
f_{x}(x)=f f_{X Y}(x, y) d y
$$

Marginal probability density functions of $\stackrel{-\infty}{Y_{i s}}$ defined as

$$
f_{Y}(y)=f_{-\infty}^{\infty} f_{X Y}(x, y) d x
$$

Conditional probability density function :

Conditional probability density function of X on Y is

$$
\mathrm{f}_{\mathrm{XY}}(\mathrm{X} / \mathrm{Y})=\frac{\mathrm{fXY}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})}{\mathrm{fy}_{\mathrm{Y}}(\mathrm{y})}
$$

Conditional probability density function of Y on X is

$$
\mathrm{f}_{\mathrm{XY}}(\mathrm{Y} / \mathrm{X})=\frac{\mathrm{f}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})}{\mathrm{f}_{\mathrm{X}}(\mathrm{X})}
$$

Problems

1. For the following 2-d probability distribution of X and Y

$\mathrm{X} \backslash \mathrm{Y}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$\mathbf{0 . 1}$	$\mathbf{0}$	$\mathbf{0 . 2}$	$\mathbf{0 . 1}$
2	0.05	$\mathbf{0 . 1 2}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 1}$
$\mathbf{3}$	$\mathbf{0 . 1}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 1}$	$\mathbf{0 . 0 9}$

Find i) $\mathbf{P}(X \leq 2, Y=2)$ ii $) F_{x}(2)$ iii $) P(Y=3)$ iv $) P(X<3, Y \leq 4)$ v) $F_{y}(3)$.
Sol: Given

$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4
1	0.1	0	0.2	0.1
2	0.05	0.12	0.08	0.01
3	0.1	0.05	0.1	0.09

i) $\mathrm{P}(\mathrm{X} \leq 2, \mathrm{Y}=2)=\mathrm{P}(\mathrm{X}=1, \mathrm{Y}=2)+\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=2)$

$$
=0+0.12
$$

$$
=0.12
$$

ii) $\mathrm{Fx}(2)=\mathrm{P}(\mathrm{X} \leq 2)=\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)$

$$
=\sum_{j} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right)+\sum_{\mathrm{j}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)
$$

$=(0.1+0+0.2+0.1)+(0.05+0.2+0.08+0.1)=0.66$
iii) $\mathrm{P}(\mathrm{Y}=3)=\sum_{i} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$

$$
=0.2+0.08+0.1
$$

$$
=0.38
$$

iv) $\mathrm{P}(\mathrm{X}<3, \mathrm{Y} \leq 4)=\mathrm{P}(\mathrm{X}<3, \mathrm{Y}=1)+\mathrm{P}(\mathrm{X}<3, \mathrm{Y}=2)+\mathrm{P}(\mathrm{X}<3, \mathrm{Y}=3)$

$$
+\mathrm{P}(\mathrm{X}<3, \mathrm{Y}=4)
$$

$$
\begin{aligned}
=\mathrm{P}(\mathrm{X}=1, \mathrm{Y}=1) & +\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=1)+\mathrm{P}(\mathrm{X}=1, \mathrm{Y}=2) \\
& +\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=2)+\mathrm{P}(\mathrm{X}=1, \mathrm{Y}=3)+\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=3) \\
& +\mathrm{P}(\mathrm{X}=1, \mathrm{Y}=4)+\mathrm{P}(\mathrm{X}=2, \mathrm{Y}=4)
\end{aligned}
$$

$$
\begin{aligned}
&=(0.1+0+0.2+0.1)+(0.05+0.2+0.08+0.1) \\
&=0.66 \\
& \text { v } \mathrm{Fy}(3)=\mathrm{P}(\mathrm{Y} \leq 3)=\mathrm{P}(\mathrm{Y}=1)+\mathrm{P}(\mathrm{Y}=2)+\mathrm{P}(\mathrm{Y}=3) \\
&=(0.1+0.05+0.1)+(0+0.12+0.05)+(0.2+0.08+0.1) \\
&=0.8
\end{aligned}
$$

2.Suppose the random variables X and Y have the joint density function defined by

$$
f(x, y)=\left\{\begin{array}{c}
c(2 x+y) \text { if } 2<x<6,0<y<5 \\
0 \text { otherwise }
\end{array}\right.
$$

$\begin{array}{lll}\text { Find i)c } & \text { ii) } \mathbf{P}(\mathbf{X}>3, \mathbf{Y}>2) & \text { iii) } \mathbf{P}(\mathbf{X}>3)\end{array}$

Sol: Since $\mathrm{f}_{-\infty}^{\infty} \mathrm{f}_{-\infty}^{\infty} f(x, y) d x d y=1$

$$
\begin{aligned}
& f f c(2 x+y) d y d x=1 \\
& { }_{2}^{2}{ }_{6}^{0} \\
& f_{2} c\left(2 x y+\frac{y^{2}}{2}\right)_{0}^{5} d x=1 \\
& \boldsymbol{f}_{2} c\left(10 x+\frac{25}{2}\right) d x=1 \\
& \quad \therefore c=\frac{1}{210}
\end{aligned}
$$

$\mathrm{c}\left(10^{\mathrm{x}^{2}}+\frac{{ }_{2} \mathrm{x}^{2}{ }_{2}^{6}}{}\right)_{2}=1$
ii) $\mathrm{P}(\mathrm{X}>3, Y>2)={ }_{\mathrm{f}_{3}} \mathrm{f}_{2}^{5} \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dydx}$

$$
\begin{aligned}
& f_{3} f_{2} f_{1}(2 x+y) d y d x \\
& =f_{3}^{6} f_{2} \frac{1}{210}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{210} f^{6} f^{5}(2 x+y) d y d x \\
& =\frac{1}{210} f_{3}^{0}\left(2 x y+\frac{y^{2}}{2}\right)_{0}^{5} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{25 x_{0}} f^{6}\left(10 x+\frac{25}{2}\right) d x \\
& \left.\left.x+\frac{-}{2}\right)\right]_{3}^{3}=\frac{23}{28} .
\end{aligned}
$$

3.The joint density function defined by

$$
f(x, y)=\left\{\begin{array}{c}
c(x y) \text { if } 1<x<3,2<y<4 \\
0 \text { otherwise }
\end{array}\right.
$$

Find i) c
ii) Marginal probability density functions of X and Y
iii) Show that X and Y are independent.

Sol: Since $f_{-\infty}^{\infty} f_{-\infty}^{\infty} f(x, y) d x d y=1$
43
$\mathrm{ffc}(x y) d x d y=1$
${ }^{2} 4^{1} \quad x^{2} \quad 3$
$\mathrm{f}_{\mathrm{Bc}} \mathrm{cy}_{\mathrm{y}^{2}}\left(\frac{-}{2}\right){ }_{1} \mathrm{dy}=1$
$\frac{8 \mathrm{c}}{2}\left(\frac{y^{2}}{2}\right)_{2}^{4}=1 \quad \therefore \mathrm{c}=\frac{1}{24}$.
ii) Marginal probability density functions of X and Y

Marginal probability density function of X is

Marginal probability density functions of Y is

$\therefore \mathrm{X}$ and Y are independent.

P Mahendra Varma, Asst Professor

4.The joint density function defined by

$$
f(x, y)=\left\{\begin{array}{c}
\left(x^{2}+\frac{x y}{3}\right) \text { if } 0<x<1,0<y<2 \\
0 \text { otherwise }
\end{array}\right.
$$

Find

i) Conditional probability density functions.
ii) Marginal probability density functions
iii) Check whether the functions X and Y are independent or not

Sol: $\operatorname{Givenf}(x, y)=\left\{\left(\mathrm{x}^{2}+\frac{\mathrm{xy}}{3}\right)\right.$ if $0<\mathrm{x}<1,0<\mathrm{y}<2$ 0 otherwise
Marginal probability density functions of X is

Marginal probability density functions of Y is

$$
\begin{aligned}
& \text { Here } \quad \log _{Y}\left(X_{y} f_{X}(X)=2 x\left(x+\frac{1}{3}\right)\left(\frac{1^{3}}{3}+\frac{y}{6}\right)\right.
\end{aligned}
$$

Hence X and Y are not Independent.
Conditional probeability density function of X on Y is

$$
\mathrm{f}_{\mathrm{XY}}(\mathrm{X} / \mathrm{Y})=\frac{f_{Y}(\mathrm{Hy})}{\mathrm{f}^{2}\left(x, x^{2}+\frac{x y}{3}\right)}\left(\frac{(1+y)}{3}\right.
$$

Conditional probability density function of Y on X is f $(Y / X)=\xlongequal[\mathrm{f}_{\mathrm{XY}}(x, y)]{ }={ }^{\left(\mathrm{X}_{2}\right.}$

Binomial Distribution: A Random variable ' X ' has binomial distribution if it assumes only non-negative values with probability mass function given by

$$
\begin{aligned}
& \text { th probability mass function given by } n_{n_{\mathrm{c}}} p^{\mathrm{r}} q^{\mathrm{n}-\mathrm{r}} \underset{r=0,1,2,----n}{ } \begin{aligned}
p(x) & =\{ \\
0 & \text { otherwise } \\
& =b(r ; n, p)
\end{aligned}
\end{aligned}
$$

Conditions For Applicability of Binomial Distributions:

1. Number of trials must be finite (n is finite)
2. The trails are independent
3. There are only two possible outcomes in any event i.e., success and failure.
4. Probability of success in each trail remains constant.

Examples:

1. Tossing a coin n times
2. Throwing a die
3. Number of defective items in the box

Mean of the Binomial Distribution

$$
\begin{aligned}
& \text { n } \\
& \mu=\sum_{r=0} r . P(r) \\
& \text { n } \\
& =\sum \mathrm{r} . \mathrm{n}_{\mathrm{c}} \mathrm{Pr}_{\mathrm{r}} \mathrm{q}^{\mathrm{n}-\mathrm{r}} \\
& \mathrm{r}=0 \\
& =n_{c_{1}} p^{1} q^{n-1}+2 n_{2} P^{r} q^{n-2}+3 n_{c_{3}} p^{3} q^{n-3}+\cdots \ldots . n_{c_{n}} p^{n} q^{n-n} \\
& =n p^{1} q^{n-1}+2 \cdot \frac{n(n-1)}{2!} p^{2} q^{n-2}+3 \cdot \frac{n(n-1)(n-2)}{3!} p^{3} q^{n-3}{ }_{+}^{c^{n}}--+n p^{n} \\
& =n p\left[q^{(n-1)}+(n-1)_{q} p^{1} q^{(n-1)-1}+---+p^{n-1}\right. \\
& =n p[p+q]^{n-1} \\
& =n p \quad \text { since }[p+q=1] \\
& \therefore \text { Mean } \mu=n \text {. } \\
& \text { Variance of the Binomial Distribution } \\
& \sigma^{2}=E\left[X^{2}\right]-(E[X])^{2}=E\left[X^{2}\right]-\mu^{2}=\sum_{\mathrm{r}=0} r^{2} p(r)-\mu^{2} \\
& \text { n } \\
& =\sum_{r=0}[r(r-1)+r] P(r)-\mu^{2} \\
& =\Sigma r(r-1) P(r)+\Sigma r \cdot P(r)-n^{2} p^{2} \\
& r=0 \quad r=0 \\
& =\sum_{\mathrm{r}=0} \mathrm{r}(\mathrm{r}-1) \mathrm{n}_{\mathrm{c}_{\mathrm{r}}} \mathrm{Pr}_{\mathrm{r}}^{\mathrm{n}-\mathrm{r}}+\mathrm{np}-\mathrm{n}^{2} \mathrm{P}^{2} \\
& \begin{array}{c}
\mathrm{r}=0 \\
\mathrm{n} \\
\mathrm{n} \\
\mathrm{n} \\
\hline
\end{array}
\end{aligned}
$$

Let $\Sigma r(r-1) P(r)=\Sigma r(r-1) n_{c_{r}} P_{r}^{r} q^{n-r}=2 n_{c_{2 r}} P^{2} q^{2} n^{n-2}+6 n_{c_{3}} P^{3} q^{n-3}$
$r=0 \quad r=0$
$+12 \mathrm{n}_{\mathrm{C}} \mathrm{P}^{4} \mathrm{q}^{\mathrm{n}-4}+---+\mathrm{n}(\mathrm{n}-1) \mathrm{Pn}^{\mathrm{n}}$
$\left.\left.=n(n-1) P^{2}\right] q^{n-2}++(n-2)_{c_{1}} p^{1} q^{(n-2)-1}+\cdots+p^{2}\right]$
$=n(n-1) P^{2}(p+q)^{n-2}=n^{2} P^{2}-n P^{2}$
Thus $\sigma^{2}=n^{2} \mathrm{P}^{2}-\mathrm{nP} \mathrm{P}^{2}+\mathrm{np}-\mathrm{n}^{2} \mathrm{P}^{2}$
$=n p(1-p)=n p q$.
\therefore Variance $\sigma^{2}=n q q$

Recurrence Relation

$$
\begin{align*}
& p(r+1)=n_{\mathrm{C}_{\mathrm{r}+1}}(p)^{\mathrm{r}+1}(q)^{\mathrm{n}-\mathrm{r}-1 .} \tag{1}\\
& p(r)=n_{\mathrm{C}_{\mathrm{r}}}(p)^{\mathrm{r}}(q)^{\mathrm{n}} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& p(r+1)=\frac{n_{\mathrm{C}_{\mathrm{r}+1}}}{n_{\mathrm{C}_{\mathrm{r}}}}\left(\sum_{q}^{q} p(r) .\right.
\end{aligned}
$$

Problems

1. In tossing a coin 10 times simultaneously. Find the probability of getting
 i) at least 7 heads ii) almost $\mathbf{3}$ heads iii) exactly $\mathbf{6}$ heads.

Sol: Given $n=10$
Probability of getting a head in tossing a coin $=\frac{1}{2}=p$.
Probability of getting no head $=q=1-\frac{1}{2}=\frac{1}{2}$
The probability of getting r heads in a throw of 10 coins is

$$
P(X=r)=p(r)=10 \mathrm{c}_{\mathrm{r}}\left(\frac{1}{2}\right)^{\mathrm{r}}\left(\frac{1}{2}\right)^{10-\mathrm{r}} ; r=0,1,2, \ldots \ldots \ldots, 10
$$

(i)Probability of getting at least seven heads is given by

$$
\begin{gathered}
P(X \geq 7)=P(X=7)+P(X=8)+P(X=9)+P(X=10) \\
=10 \mathrm{c}_{7}\left(\frac{1}{2}\right)^{7}\left(\frac{1}{2}\right)^{10-7}+10 \mathrm{c}_{8}\left(\frac{1}{2}\right)^{8}\left(\frac{1}{2}\right)^{10-8}+10 \mathrm{c}_{9}\left(\frac{1}{2}\right)^{9}\left(\frac{1}{2}\right)^{10-9}+10 \mathrm{c}_{10}\left(\frac{1}{2}\right)^{10} \\
=\frac{1}{2^{10}}\left[10 \mathrm{c}_{7}+10 \mathrm{c}_{8}+10 \mathrm{c}_{9}+10 \mathrm{c}_{10}\right]=\frac{1}{2^{10}}[120+45+10+1]=\frac{176}{1024}=0.1719
\end{gathered}
$$

(ii)Probability of getting at most 3 heads is given by

$$
\begin{aligned}
& P(X \leq 3)=P(X=0)+P(X=1)+P(X=2)+P(X=3) \\
& =10_{\mathrm{c}_{1}}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{10-1}+10 \mathrm{c}_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{10-2}+10 \mathrm{c}_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{10-3}+10 \mathrm{c}_{0}\left(\frac{1}{2}\right)^{10} \\
& =\frac{1}{2^{10}}\left[10 \mathrm{c}_{0}+10 \mathrm{c}_{1}+10 \mathrm{c}_{2}+10 \mathrm{c}_{3}\right] \\
& =\frac{1}{2^{10}}[120+45+10+1]=\frac{176}{1024}=0.1719
\end{aligned}
$$

(iii)Probability of getting exactly six heads is given by

$$
\begin{aligned}
& P(X=6)=\begin{array}{lll}
10_{c_{6}}\left(\frac{1}{2}\right) & \left(\frac{1}{2}\right)
\end{array} \\
& =0.205 \text {. }
\end{aligned}
$$

2.In 256 sets of $\mathbf{1 2}$ tosses of a coin, in how many cases one can expect 8 Heads and 4 Tails.

Sol: The probability of getting a head, $p=\frac{1}{2}$
The probability of getting a tail, $q=\frac{1}{2}$
Here $n=12$
The probability of getting 8heads and 4Tails in 12 trials $=P(X=8)=12 \mathrm{C}_{8}\left(\frac{1}{2}\right)^{8}\left(\frac{1}{2}\right)^{4}$

$$
=\frac{12!}{8!4!}\left(\frac{1}{2}\right)^{12}=\frac{495}{2^{12}}
$$

The expected number of getting 8 heads and 4 Tails in 12 trials of such cases in 256 sets

$$
=256 \times P(X=8)=2^{8} \times \frac{495}{2^{12}}=\frac{45}{16}=30.9375 \sim 3
$$

3.Assume that 50% of all engineering students are good in Mathematics. Determine the

 probabilities that among 18 engineering students (i) exactly 10 (ii) at least 10 (iii) at most 8 (iv) at least 2 and at most 9 are good in mathematics.Sol: Let x be the number of engineering students who are good in Mathematics.
$\mathrm{p}=$ The probability of students good in mathematics $=50 \%=\frac{1}{2}$
$\mathrm{q}=1-\mathrm{p}=\frac{1}{2}$
$\mathrm{n}=$ Number of students $=18$
The probability distribution is $\mathrm{p}(\mathrm{x})=C_{1}^{n} p_{1}^{\mathrm{x}} q^{n-\mathrm{x}}=C_{\mathrm{x}}^{18}\left(\frac{1}{2}\right)^{\mathrm{x}}\left(\frac{1}{2}\right)^{18-\mathrm{x}}=C_{\mathrm{x}}^{18}\left(\frac{1}{2}\right)^{18}$
(i) $\mathrm{P}($ exactly 10$)=\mathrm{p}(10)={ }^{18}{ }_{1}{ }_{18}^{18}=\left(\frac{1}{2}\right)(43758)=0.1669$

$$
C_{10}(\overline{-})=(\overline{2})
$$

(ii) $\mathrm{P}($ at least 10$)=\mathrm{P}(\mathrm{X} \geq 10)=\sum_{\mathrm{x}=10}^{18} C_{\mathrm{x}}^{18}\left(\frac{1}{2}\right)^{18}$

$$
=\left(\frac{1}{2}\right)^{18}\left[C_{10}^{18}+C_{11}^{18}+C_{12}^{18}+\cdots+C_{18}^{18}\right]
$$

(iii) $\mathrm{P}($ at most 8$)=\mathrm{P}(\mathrm{X} \leq 8)=\sum_{\mathrm{x}=0}^{8} C_{\mathrm{x}}^{18}\left(\frac{1}{2}\right)^{18}=\left(\frac{1}{2}\right)^{18}\left[C_{0}^{18}+C_{1}^{18}+C_{2}^{18}+\cdots+C_{8}^{18}\right]$
(iv) $\mathrm{P}($ at least 2 and at most 9$)=\mathrm{P}(2 \leq \mathrm{X} \leq 9)=\sum_{\mathrm{x}=2}^{9} C_{\mathrm{x}}^{18}\left(\frac{1}{2}\right)^{18}$

$$
\mathrm{P}(2 \leq \mathrm{X} \leq 9)=\left(\frac{1}{2}\right)^{18}\left[C_{2}^{18}+C_{3}^{18}+C_{4}^{18}+\cdots+C_{9}^{18}\right]
$$

4.Find the probability of getting an even number 3 or 4 or 5 times in throwing a die 10 times

Sol: Probability of getting an even number in throwing a die $=\frac{3}{6}=\frac{1}{2}=p$.
Probability of getting an odd number in throwing a die $=q=\frac{1}{2}$.
\therefore Probability of getting an even number 3 or 4 or 5 times in throwing a die 10 times is

$$
=\frac{1}{2_{10}}\left[10 C_{C_{3}}+10_{C_{4}}+10_{c_{5}}\right]
$$

$$
\begin{aligned}
& P(X=3)+P(X=4)+P(X=5) \\
& \left.=10_{\mathrm{c}_{3}}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{10-3}+10_{\mathrm{c}_{4}}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{10-4}+10 \mathrm{c}_{5} \stackrel{1}{(}\right)^{5}(-)^{1}{ }^{10-5} \\
& \left.10 \mathrm{c}_{4}+10_{\mathrm{c}_{5}}\right] \\
& = \\
& = \\
& =0.568 .
\end{aligned}
$$

5.Out of 800 families with $\mathbf{4}$ children each ,how many could you expect to have
a) three boys b)five girls $\mathbf{c}) 2$ or $\mathbf{3}$ boys d)at least 1 boy.

Sol: : Given $n=5, N=800$
Let having boys be success
Probability of having a boy $=\frac{1}{2}=p$.
Probability of having girl $=q=1-\frac{1}{2}=\frac{1}{2}$
The probability of having r boyss in 5 children is

$$
P(X=r)=p(r)=5 \mathrm{c}_{\mathrm{r}}\left(\frac{1}{\eta}\right)^{\mathrm{r}}\left(\frac{1}{2}\right)^{5-\mathrm{r}} ; r=0,1,2 \ldots \ldots 5
$$

a)Probability of having 3 boys is given by $P(X=3)=5_{C_{r}}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{5-3}=\frac{5}{16}$

Expected number of families having 3 boys $=N p(3)=800\left(\frac{5}{16}\right)=250$ families.

P Mahendra Varma, Asst Professor

b) Probability of having 5 girls $=$ Probability of having no boys is given by

$$
P(X=0)=5 \mathrm{c}_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{5-0}=\frac{1}{32}
$$

Expected number of families having 5 girls $=N p(0)=800\left(\frac{1}{32}\right)=25$ families.
c) Probability of having either 2 or 3 boys is given by

$$
P(X=2)+P(X=3)=5 \mathrm{c}_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{5-2}+5 \mathrm{c}_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{5-3}=\frac{5}{18}
$$

Expected number of families having 3 boys $=N p(3)=800\left(\frac{5}{8}\right)=500$ families.
d) Probability of having at least 1 boy is given by

$$
\begin{aligned}
& P(X \geq 1)=1-P(X=0) \\
& =1-5 \mathrm{c}_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{5-0}=\frac{31}{32}
\end{aligned}
$$

Expected number of families having at least 1 boy $=800\left(\frac{31}{32}\right)=775$ families.

6.Fit a Binomial distribution for the following data.

\mathbf{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
\mathbf{f}	$\mathbf{2}$	$\mathbf{1 4}$	$\mathbf{2 0}$	$\mathbf{3 4}$	$\mathbf{2 2}$	$\mathbf{8}$

Sol: Given $\mathrm{n}=5, \sum f=2+14+20+34+22+8=100$ $\sum x_{\mathrm{i}} f_{\mathrm{i}}=0(2)+1(14)+2(20)+3(34)+4(22)+5(8)=284$
\therefore Mean of the distribution $=\frac{\sum \mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{284}{100}=2.84$
We have Mean of the binomial distribution $=n p=2.84$

$$
\therefore p=\frac{2.84}{5}=0.568 ; q=1-0.568=0.432
$$

Table To Fit Binomial Distribution

X	$\mathrm{P}\left(\mathrm{X}=x_{\mathrm{i}}\right)$	$\mathrm{E}(X)$
0	$5_{\mathrm{C}_{0}}(0.568)^{0}(0.432)^{5-0}=0.02$	$\mathrm{~Np}(0)=100(0.02)=2$
1	$5_{\mathrm{C}_{1}}(0.568)^{1}(0.432)^{5-1}=0.09$	9
2	$5_{\mathrm{C}_{2}}(0.568)^{2}(0.432)^{5-2}=0.26$	26
3	$5_{C_{3}}(0.568)^{3}(0.432)^{5-3}=0.34$	
		34
4	$5_{4}(0.568)^{4}(0.432)^{5-4}=0.22$	22
5	$5 \mathrm{C}_{5}(0.568)^{5}(0.432)^{5-5}=0.059$	5.9

Fitted Binomial distribution is

x	0	1	2	3	4	5
f	2	10	26	34	22	6

POISSON DISTRIBUTION

A random variable ' X ' follows Poisson distribution if it assumes only non-negative values with probability mass function is given by

$$
P(x=r)=P(r ; \lambda)=\left\{\begin{array}{cc}
\frac{e^{-\lambda} \lambda^{\mathrm{r}}}{r!} \text { for } & y=0,1, \ldots(\lambda>0) \\
0, & \text { otherwise }
\end{array}\right.
$$

Conditions For Poisson Distribution

1. The number of trials are very large (infinite)
2. The probability of occurrence of an event is very small $(\lambda=n p)$
3. $\lambda=n p=$ finite

Examples:

1. The number of printing mistakes per page in a large text
2. The number of telephone calls per minute at a switch board
3. The number of defective items manufactured by a company.

Recurrence Relation

$P(r+1)=\frac{\mathrm{e}^{-\varrho \eta^{r+1}}}{(r+1)!}$
$P(r)=\mathrm{e}^{-\varrho \eta^{r}}$
$P(r)=\frac{\mathrm{e}^{\left.-\varrho \eta^{r}\right)^{r}}}{(\mathrm{r})!} \quad$ (2)
$\overline{1}=\frac{P(r+1)}{P(r)}=\frac{e^{-\lambda} \lambda^{2} \cdot \lambda}{(r+1) r!} X \frac{r!}{e^{-\lambda} \lambda^{2}}$
$P(r+1)=\left(\frac{\lambda}{r+1}\right) P(r)$ for $r=0,1,2---$

Problems

1. Using Recurrence relation find probability when $x=0,1,2,3,4,5$, if mean of P.D is 3 .

Sol: We have

$$
P(r+1)=\left(\frac{\lambda}{r+1}\right) P(r) \text { for } r=0,1,2----(1)
$$

Given $\lambda=3$

$$
P(0)=\frac{\mathrm{e}^{-3} \lambda^{0}}{(0)!}=e^{-3} \text { [by definition of Poisson distribution] }
$$

From (1),
For $r=0, P(1)=\left(\frac{3}{0_{+1} 1}\right) P(0)=3 e^{-3}$
For $r=1, P(2)=\left(\frac{3}{1+1}\right) P(0)=\frac{3}{2} e^{-3}$
For $r=2, P(3)=\left(\frac{\stackrel{1+1}{3+1}}{\frac{2+1}{3}}\right) P(0)=e^{-3}$
For $r=3, P(4)=\left(\frac{3+1}{3+1}\right) P(0)=\frac{3}{4} e^{-3}$
For $r=4, P(5)=\left(\frac{3_{4+1}^{3}}{4+1}\right) P(0)=\frac{4}{5} e^{-3}$.
2.If X is a random variable such that $3 P(X=4)=\frac{P(X=2)}{2}+P(X=0)$.

Find mean, $P(X \leq 2)$.
Sol: Given $3 P(X=4)=\frac{\mathrm{P}(\mathrm{X}=2)}{2}+P(X=0) \ldots .(1)$
Since X is a Poisson variable, $P(x=r)=\frac{\mathrm{e}^{-\varrho \eta^{r}}}{\mathrm{r}!}$

$$
\therefore 3 \frac{e^{-\lambda} \lambda^{4}}{4!}=\frac{e^{\mathrm{r}!} \lambda^{2}}{(2) 2!}+\frac{e^{-\lambda} \lambda^{0}}{0!}
$$

Solving it we get $\lambda^{4}-2 \lambda^{2}-4=0$

Taking $\lambda^{2}=k$, we get $k^{2}-2 k-4=0$

$$
\begin{gathered}
\therefore k=4,-2 \\
\therefore \lambda^{2}=4 \\
\\
\lambda=2
\end{gathered}
$$

Therefore, Mean of the Poisson distribution $=2$

$$
\begin{aligned}
P(X \leq 2) & =P(X=0)+P(X=1)+P(X=2) \\
& =\frac{\mathrm{e}^{-2} \lambda^{0}}{0!}+\frac{\mathrm{e}^{-22^{1}}}{1!}+\frac{\mathrm{e}^{-02_{2}}}{2!}=0.54
\end{aligned}
$$

3.A car hire firm has 2 cars which it hires out day by day.The number of demands for a car on each day is distributed as poisson with mean 1.5 Calculate the proportion of days i) on which there is no demand
ii) on which demand is refused.

Sol: Let number of demands for cars be the success.
Given mean $=1.5=\lambda$
Using Poisson distribution $P(x=r)=\frac{\mathrm{e}^{-อ{ }^{\eta}} \lambda^{\mathrm{r}}}{\mathrm{r}!}$
i)Probability that there is no demand for car is

$$
P(x=0)=\frac{e^{-1.5}(1.5)^{0}}{0!}=0.223
$$

Expected number of days that there is no demand $=\mathrm{N} P(0)=365(0.223)$

$$
=81.39 \sim 81 \text { days }
$$

ii) Probability that demand refused for car is

$$
\begin{aligned}
& P(x>2)=1-P(x=0)-P(x=1)-P(x=2) \\
= & 1-\frac{e^{-1.5}(1.5)^{0}}{0!}-\frac{e^{-1.5}(1.5)^{1}}{1!}-\frac{e^{-1.5}(1.5)^{2}}{2!}=0.191
\end{aligned}
$$

Expected number of days that demand refused for car $=\mathrm{N} P(x>2)$

$$
=365(0.191)=69.7 \sim 70 \text { days }
$$

4. A hospital switch board receives an average of 4 emergency calls in a 10-minute interval. What is the probability that (i) there are at most 2 emergency calls in a 10 minute interval(ii) there are exactly 3emergency calls in a 10-minute interval.
Sol: Mean, $\lambda=(4$ calls $/ 10$ minutes $)=4$ calls

$$
\therefore P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}=\frac{e^{-4^{x}} 4^{x}}{x!}=\frac{1}{e^{4}} \cdot \frac{4^{x}}{x!}
$$

(i) $\mathrm{P}($ at most 2 calls $)=\mathrm{P}(\mathrm{X} \leq 2)$

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2) \\
& =\frac{1}{\mathrm{e}^{4}}+\frac{1}{\mathrm{e}^{4}} \cdot 4+\frac{1}{\mathrm{e}^{4}} \cdot \frac{4^{2!}}{2!}=13 e^{-4}=0.2381 \\
& \mathrm{C} \\
& =\mathrm{P}(\mathrm{X}=3)=1=01954
\end{aligned}
$$

(ii) $\mathrm{P}($ exactly 3 calls $)=\mathrm{P}(\mathrm{X}=3)=\frac{1}{\mathrm{e}^{4}} \cdot \frac{4^{3!}}{3!}=0.1954$
5. The distribution of typing mistakes committed by typist is given below.

Fit a Poisson distribution for it.

Mistakes per page	0	1	2	3	4	5
Number of pages	142	156	69	27	5	1

Sol: Given $\mathrm{n}=5, \sum f=142+156+69+27+5+1=400$
$\sum x_{\mathrm{i}} f_{\mathrm{i}}=0(142)+1(156)+2(69)+3(27)+4(5)+5(1)=400$
\therefore Mean of the distribution $=\frac{\sum \underline{x}_{\underline{i}}^{f_{i}}}{\sum f_{i}}=\frac{400}{400}=1$

We have Mean of the Poisson distribution $=\lambda=1$

Table To Fit Poisson Distribution

X	$\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{E}\left(x_{\mathrm{i}}\right)=\mathrm{N} \mathrm{P}\left(x_{\mathrm{i}}\right)$
0	$\frac{\mathrm{e}^{-1}(1)^{0}}{0!}=0.368$	$400(0.368)=147.2 \sim 147$
1	$\frac{\mathrm{e}^{-1}(1)^{1}}{1!}=0.368$	147
2	$\frac{\mathrm{e}^{-1}(1)^{2}}{2!}=0.184$	74
3	$\frac{\mathrm{e}^{-1}(1)^{3}}{3!}=0.061$	24
4	$\frac{e^{-1}(1)^{4}}{4!}=0.015$	6
5	$\frac{e^{-1}(1)^{5}}{5!}=0.003$	1

Fitted Poisson distribution is

Mistakes per page	0	1	2	3	4	5
Number of pages	147	147	74	24	6	1

6. A manufacturer of television set known that on an average 5% of their product is defective. They sell television sets in consignment of 100 and guarantees that not more than $\mathbf{2}$ set will be defective. What is the probability that the TV set will fail to meet the guaranteed quality?
Sol: The probability of TV Set to be defective $=p=5 \%=0.05$
Total number of TV sets , $n=100$
\therefore Mean, $\lambda=\mathrm{np}=100(0.05)=5$
We have $P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}=\frac{e^{-5} 5^{x}}{x!}$
$\mathrm{P}(\mathrm{a}$ TV set will fail to meet the guarantee $)=\mathrm{P}(\mathrm{X}>2)=1-\mathrm{P}(\mathrm{X} \leq 2)$

$$
\begin{aligned}
&=1-[\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(=2)] \\
&=1-\left[\frac{\mathrm{e}^{-5} 5^{0}}{0!}+\frac{\mathrm{e}^{-5} 5^{1}}{1!}+\frac{\mathrm{e}^{-5} 5^{2}}{2!}\right] \\
&=1-0.1247=0.8753
\end{aligned}
$$

UNIT 3

CONTINUOUS AND SAMPLING DISTRIBUTIONS

NORMAL DISTRIBUTION (GAUSSIAN DISTRIBUTION)

Let X be a continuous random variable, then it is said to follow normal distribution if its pdf is given by

$$
f(x, \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\left.-\frac{1}{2} \frac{x-\mu}{\sigma}\right)^{2}},-\infty \leq x \leq \infty, \mu, \sigma>0
$$

Here , σ are the mean \& S.D of X.

Properties Of Normal Distribution

1. Normal curve is always centered at mean
2. Mean, median and mode coincide (i.e., equal)
3. It is unimodal
4. It is a symmetrical curve and bell shaped curve
5. X-axis is an asymptote to the normal curve
6. The total area under the normal curve from $-\infty$ to ∞ is " 1 "
7. The points of inflection of the normal curve are $\mu \pm \sigma, \mu \pm 3 \sigma$
8. The area of the normal curve between

$$
\begin{aligned}
& \mu-\sigma \text { to } \mu+\sigma=68.27 \% \\
& \mu-2 \sigma \text { to } \mu+2 \sigma=95.44 \% \\
& \mu-3 \sigma \text { to } \mu+3 \sigma=99.73 \%
\end{aligned}
$$

9.The curve for normal distribution is given below

Standard Normal Variable

Let $Z=\frac{x-\mu}{\sigma}$ with mean ' 0 ' and variance is ' 1 ' then the normal variable is said to be standard normal variable.

Standard Normal Distribution

The normal distribution with man ' 0 ' and variance ' 1 ' is said to be standard normal distribution of its probability density function is defined by

$$
\begin{gathered}
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{-2\left(\frac{x-u}{\sigma}\right)^{2}}-\infty<x \leq \infty} \\
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}-\infty \leq x \leq \infty(\mu=0, \sigma=1)
\end{gathered}
$$

Mean Of The Normal Distribution

Consider Normal distribution with b, σ as parameters Then

$$
f(x ; b, \sigma) \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-b)^{2}}{2 \sigma^{2}}}
$$

Mean of the continuous distribution is given by

$$
\begin{aligned}
& \mu=f^{\infty} \mathrm{xf}(\mathrm{x}) \mathrm{dx}=\mathrm{f}^{\infty} \mathrm{x} \frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-\frac{(\mathrm{x}-\mathrm{b})^{2}}{2 \sigma^{2}}} \mathrm{dx} \\
& \left.=\frac{1}{\sqrt{2 \pi}} \mathrm{f}_{-\infty}^{\infty}(\sigma \mathrm{z}+\mathrm{b}) \mathrm{e}^{-\frac{(\mathrm{z})^{2}}{2}} \mathrm{dz} \text { [Putting z }=\frac{\mathrm{x}-\mathrm{b}}{\sigma} \text { so that } \mathrm{dx}=\sigma \mathrm{dz}\right] \\
& =\frac{\sigma}{\sqrt{2 \pi}} \mathrm{f}_{-\infty}^{\infty} \mathrm{ze} \mathrm{e}^{-\frac{(\mathrm{z})^{2}}{2} \mathrm{dz}+\frac{\mathrm{b}}{\sqrt{2 \pi}} \mathrm{f}_{-\infty}^{\infty} \mathrm{e}^{-\frac{(\mathrm{z})^{2}}{2}} \mathrm{dz}} \\
& =\frac{2 \mathrm{~b}}{\sqrt{2 \pi}} \mathrm{f}_{-0}^{\infty} \mathrm{e}^{-\frac{(\mathrm{z})^{2}}{2}} \mathrm{dz}
\end{aligned}
$$

[since $\mathrm{z} \mathrm{e} \mathrm{e}^{-\frac{(\mathrm{z})^{2}}{2}}$ is an odd function and $\mathrm{e}^{-\frac{(\mathrm{z})^{2}}{2} \text { is an even function] }}$
$\mu=\frac{2 \mathrm{~b}}{\sqrt{2 \pi}} \sqrt{\frac{\pi}{2}}=\mathrm{b}$

$$
\therefore \text { Mean }=\mathrm{b}
$$

Variance of the Normal Distribution

Variance $=f_{-\infty}^{\infty} x^{2} f(x) d x-\mu^{2}$
$=\frac{1}{\sigma \sqrt{2 \pi}} \boldsymbol{f}_{-\infty}^{\infty} \mathrm{X}^{2} \mathrm{e}^{-\frac{1}{2}\left(\left(_{\sigma}\right)^{x-\mu}\right.} \mathrm{d} \mathrm{dx}-\mu^{2}$
Let $\mathrm{z}=\frac{\mathrm{x}-\mu}{\sigma} \rightarrow \mathrm{dx}=\sigma \mathrm{dz}$
$=\frac{1}{\sigma \sqrt{2 \pi}} \boldsymbol{f}_{-\infty}^{\infty}\left(\mu^{2}+\sigma^{2} z^{2}+2 \mu \sigma z\right) e^{-\frac{z^{2}}{2}} \sigma d z-\mu^{2}$
$=\frac{\mu^{2}}{\sqrt{2 \pi}} \boldsymbol{f}_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{z}^{2}} \mathrm{z} d z+\frac{\sigma^{2}}{\sqrt{2 \pi}} \boldsymbol{f}_{-\infty}^{\infty} \mathrm{z}^{2} \mathrm{e}^{-\frac{3^{2}}{2}} \mathrm{dz}+\frac{2 \mu \sigma}{\sqrt{2 \pi}} \boldsymbol{f}_{-\infty}^{\infty} \mathrm{z}^{2} \mathrm{e}^{--^{3^{2}}} \mathrm{~d} d z-\mu^{2}$
$=\frac{2 \mu^{2}}{\sqrt{2 \pi}} \boldsymbol{f} \mathrm{e}^{-\frac{z^{2}}{z}} \mathrm{dz}+\frac{2 \sigma^{2}}{\sqrt{2 \pi}} \boldsymbol{f}_{0}^{\infty} \mathrm{z}^{2} \mathrm{e}^{-\overline{3^{2}}} \mathrm{dz}-\mu^{2}$
$=\frac{2 \sigma^{2}}{\sqrt{2 \pi}} f_{0}^{\infty} z^{2} e^{-z^{2}} \bar{z} d z$
$\left[\because \frac{\mathrm{z}^{2}}{2}=\mathrm{t} \rightarrow \frac{2 \mathrm{zdz}}{2}=\mathrm{dt} \rightarrow \mathrm{dz}=\frac{\mathrm{dt}}{\sqrt{2 \mathrm{t}}}\right]$
$=\frac{2 \sigma^{2}}{\sqrt{2 \pi}}{ }_{0}^{\infty} \boldsymbol{f}(2+)^{2} \mathbf{e}^{t} \frac{d t}{\sqrt{2 t}}$
$=\frac{2 \sigma^{2}}{\sqrt{\pi}} \mathrm{f}_{0}^{\infty} \mathrm{e}^{-\mathrm{t}}+{ }^{\underline{\underline{3}}-1} . \mathrm{dt}=\frac{2 \sigma^{2}}{\sqrt{\pi}} \Gamma^{\left(\frac{3}{2}\right)}=\frac{2 \sigma^{2} 1}{\sqrt{\pi}} \frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{\sigma^{2}}{\sqrt{\pi}} \sqrt{\bar{\pi}}=\sigma^{2}$
$\therefore \sigma^{2}=\boldsymbol{f}_{-\infty}^{\infty} \mathrm{x}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}-\mu^{2}$.

Median Of The Normal Distribution

Let $\mathrm{x}=\mathrm{M}$ be the median, then
$\underset{-\infty}{M} f(x) d x=\underset{M}{\infty} f(x) d x=\frac{1}{2}$
Let $\mu \in(-\infty, M)$
Let $f_{-\infty}^{\infty} f(x) d x=f_{-\infty}^{\mu} f(x) d x+f_{\mu}^{M} f(x) d x=\frac{1}{2}$
Consider $\left.f_{-\infty}^{\mu} f(x) d x=\frac{1}{\sigma \sqrt{2 \pi}} f_{-\infty}^{\mu} \mathrm{e}^{-1}-\frac{x-\mu}{\sigma}\right)^{2} d x$
Let $\mathrm{z}=\frac{\mathrm{x}-\mu}{\sigma} \rightarrow \mathrm{dx}=\sigma \mathrm{dz} \quad[\because$ Limits of $\mathrm{z}-\infty \rightarrow 0]$
$=\frac{1}{\sqrt{2 \pi}} f_{\infty}^{0} e^{-\mathrm{t}^{2}}(\mathrm{dt})($ by taking $\mathrm{z}=-\mathrm{t}$ again $)$
$=\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{\pi}{2}}=\frac{1}{2}$
μ
$\therefore \boldsymbol{f f}(\mathrm{x}) \mathrm{dx}=0 \rightarrow \mu=\mathrm{M}$
μ

Mode of the Normal Distribution

$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\left.-\frac{1}{2} \frac{x-\mu}{\sigma}\right)^{2}}-\left(\frac{x-\mu}{\sigma}\right)^{2}$
$f(x)=0 \rightarrow \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}\left(\frac{-1}{2}\right) 2\left(\frac{x-\mu}{\sigma}\right) \frac{1}{\sigma}=0$
$\rightarrow x-\mu=0$
$\rightarrow \mathrm{x}=\mu$
$f^{11}(x)=\frac{-1}{\sigma^{3} \sqrt{2 \pi}}\left[e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \cdot 1+(x-\mu) e^{-\frac{1}{2}}\left(\frac{x-\mu}{\sigma}\right)^{2}\left(\frac{-1}{2}\right) 2\left(\frac{x-\mu}{\sigma}\right) \frac{1}{\sigma}\right]$
$=\frac{-1}{\sigma^{3} \sqrt{2 \pi}}\left[e^{0}+0\right]$
$=\frac{-1}{\sigma^{3} \sqrt{2} \pi}<0$
$\therefore \mathrm{x}=\mu$ is the mode of normal distribution

Problems :

1. If X is a normal variate, find the area A
i) to the left of $z=1.78$
ii) to the right of $z=-1.45$
ii) Corresponding to $-0.8 \leq z \leq 1.53$
iii) to the left of $z=-2.52$ and to the right of $z=1.83$.

Sol: i) $P(z<-1.78)=0.5-P(-1.78<z<0)$

$$
\begin{aligned}
& =0.5-P(0<z<1.78) \\
& =0.5-0.4625=0.0375 .
\end{aligned}
$$

ii) $P(z>-1.45)=0.5+P(-1.45<z<0)$

$$
=0.5+P(0<z<1.45)
$$

$=0.5+0.4625=0.9265$.
iii) $P(-0.8 \leq z \leq 1.53)=P(-0.8 \leq z \leq 0)+P(0 \leq z \leq 1.53)$

$$
=0.2881+0.4370=0.7251
$$

iv) $P(z<-2.52)=0.5-P(0<z<2.52)=0.0059$
$P(z>1.83)=0.5-P(0<z<1.83)$

$$
=0.036
$$

2.If the masses of 300 students are normally distributed with mean 68 kgs and standard deviation 3kgs.How many students have masses
i)greater than 72 kgs .
ii)less than or equal to 64 kgs
iii)between 65 and 71 kgs inclusive.

Sol: Given $\mathrm{N}=300, \mu=68, \sigma=3$. Let X be the masses of the students.
i) Standard normal variate for $\mathrm{X}=72$ is

$$
z=\frac{x-\mu}{\sigma}=\frac{72-68}{3}=1.33
$$

$$
P(X>72)=P(z>1.33)
$$

$$
\begin{aligned}
& ==0.5-P(0<z<1.33) \\
& =0.5-0.4082 \\
& =0.092
\end{aligned}
$$

Expected number of students greater than $72=\mathrm{E}(\mathrm{X}>72)$

$$
\begin{aligned}
& =300(0.092) \\
& =27.54 \sim 28 \text { students }
\end{aligned}
$$

ii) Standard normal variate for $\mathrm{X}=64$ is

$$
z=\frac{x-\mu}{\sigma}=\frac{64-68}{3}=-1.33
$$

$$
\begin{aligned}
P(X \leq 64)=P(z & \leq-1.33) \\
& =0.5-P(0<z<1.33) \text { (Using symmetry) } \\
& =0.5-0.4082 \\
& =0.092
\end{aligned}
$$

Expected number of students less than or equal to $64=\mathrm{E}(\mathrm{X}$ less than or equal to 64$)$

$$
\begin{aligned}
& =300(0.092) \\
& =27.54 \sim 28 \text { students } .
\end{aligned}
$$

iii)Standard normal variate for $\mathrm{X}=65$ is

$$
z_{1}=\frac{x-\mu}{\sigma}=\frac{65-68}{3}=-1
$$

Standard normal variate for $\mathrm{X}=71$ is

$$
\begin{gathered}
z 2=\frac{x-\mu}{\sigma}=\frac{71-68}{3}=1 \\
P(65 \leq X \leq 71)=P(-1 \leq z \leq 1) \\
\\
=P(-1 \leq z \leq 0)+P(-0 \leq z \leq 1) \\
\\
=2 P(-0 \leq z \leq 1) \\
\\
=2(0.341)=0.6826 \\
E(65 \leq X \leq 71)=300(0.6826)=205 \text { Students. }
\end{gathered}
$$

\therefore Expected number of students between 65 and 71 kgs inclusive $=205$ students.

3.In a normal distribution 31% of the items are under 45 and 8% of the items are over 64. Find mean and variance of the distribution.

Sol: Given $P(X<45)=31 \%=0.31$
And $P(X>64)=8 \%=0.08$
Let Mean and variances of the normal distributions are μ, σ^{2}.
Standard normal variate for X is

$$
z=\frac{x-\mu}{\sigma}
$$

Standard normal variate for $X_{1}=45$ is

$$
\begin{align*}
& z_{1}=\frac{X_{1}-\mu}{\sigma}=\frac{45-\mu}{\sigma} \\
& \rightarrow \mu+\sigma Z_{1}=45 \ldots \ldots \tag{1}
\end{align*}
$$

Standard normal variate for $X_{2}=64$ is

$$
\begin{align*}
& z_{2}=\frac{X_{2}-\mu}{\sigma}=\frac{64-\mu}{\sigma} \\
& \rightarrow \mu+\sigma z_{2}=64 \ldots \ldots \tag{2}
\end{align*}
$$

From normal curve, wehave $\mathrm{P}\left(-\mathrm{z}_{1} \leq \mathrm{z} \leq 0\right)=0.19$

$$
\rightarrow z_{1}=-0.5
$$

$P\left(0 \leq z \leq z_{2}\right)=0.42$

$$
\rightarrow z 2=1.41
$$

substituting the values of $\mathrm{z}_{1}, \mathrm{z}_{2}$ in (1) and (2), we get $\mu=50, \sigma^{2}=98$.

4. In a normal distribution 7% of the items are under 35 and 89% of the items are under 63. Find mean and variance of the distribution.

Sol: Given $P(X<35)=7 \%=0.07$
And $P(X<63)=89 \%=0.89$
Let Mean and variances of the normal distributions are μ, σ^{2}.
Standard normal variate for X is $z=\frac{x-\mu}{\sigma}$
Standard normal variate for $X_{1}=35 \dot{\mathbf{z}}_{1}=\frac{\mathrm{X}_{1}-\mu}{\sigma}=\frac{35-\mu}{\sigma}$

$$
\begin{equation*}
\rightarrow \mu+\sigma z_{1}=35 . \tag{1}
\end{equation*}
$$

Standard normal variate for $X_{2}=63$ is

$$
\begin{align*}
& z_{2}=\frac{X_{2}-\mu}{\sigma}=\frac{63-\mu}{\sigma} \\
& \rightarrow \mu+\sigma z_{2}=63 \ldots \ldots(2 \tag{2}\\
&<\left.Z_{1}\right)
\end{align*}
$$

Given $P(X<35)=P\left(z<z_{1}\right)$
$0.07=0.5-P\left(-z_{1} \leq z \leq 0\right)$

From normal curve, we have

$$
\rightarrow z_{1}=1.48
$$

We have $P(X<63)=P\left(z<z_{2}\right)$

$$
0.89=0.5+P(0 \leq z \leq z 2)
$$

$$
P\left(0 \leq z \leq z_{2}\right)=0.39
$$

From normal curve, wehave $\rightarrow z_{2}=1.23$
substituting the values of $\mathrm{z}_{1}, \mathrm{Z}_{2}$ in (1) and (2), we get $\mu=50, \sigma^{2}=100$.

5.A r.v X is a normally distributed with mean 30 and SD 5.

Find the probabilities that (i) $\mathbf{2 6} \leq X \leq 40$ (ii) $X \geq 45$
Sol: Given mean $\mu=30, \sigma={ }_{x} 5_{\mu}$
(i)

When $\mathrm{x}=26, \mathrm{z}=\frac{x^{\mathrm{x}}-\mu}{\frac{1}{-}-\mu}=\frac{26-30}{4 \sqrt{\delta-30}}=-0.8=\mathrm{z}_{1}$ (say)
When $\mathrm{x}=40, \mathrm{z}=\frac{\overline{\mathrm{K}}-\mu}{\sigma}=\frac{\overline{4 \bar{\Phi}-30}}{5}=2=\mathrm{z}_{2}$ (say)
$\therefore \mathrm{P}(26 \leq \mathrm{X} \leq 40)=\mathrm{P}(-0.8 \leq \mathrm{z} \leq 2)$

$$
=\mathrm{A}\left(\mathrm{z}_{2}\right)+\mathrm{A}\left(\mathrm{z}_{1}\right)
$$

$$
=A(2)+A(-0.8)
$$

$=0.4772+0.2881=0.7653$ (from Normal table)
(ii) When $\mathrm{x}=45, \mathrm{z}=\stackrel{\mathrm{x}-\mu}{=}=3=\mathrm{z}$ (say)

```
        \sigma
        5
    1
\thereforeP(X\geq45)=P(z
    =0.5-A( (z1)
    =0.5 - A (3)
    =0.5-0.49865
    = 0.00135
```

a. Geometric distribution: Consider again the coin toss example used to illustrate the binomial. Rather than focus on the number of successes in n trials, assume that you were measuring the likelihood of when the first success will occur. For instance, with a fair coin toss, there is a 50% chance that the first success will occur at the first try, a 25% chance that it will occur on the second try and a 12.5% chance that it will occur on the third try. The resulting distribution is positively skewed and looks as follows for three different probability scenarios (in figure 6A.3):

Figure 6A.3: Geometric Distribution

Note that the distribution is steepest with high probabilities of success and flattens out as the probability decreases. However, the distribution is always positively skewed.
b. Hypergeometric distribution: The hypergeometric distribution measures the probability of a specified number of successes in n trials, without replacement, from a finite population. Since the sampling is without replacement, the probabilities can change as a function of previous draws. Consider, for instance, the possibility of getting four face cards in hand of ten, over repeated draws from a pack. Since there are 16 face cards and the total pack contains 52 cards, the probability of getting four face cards in a hand of ten can be estimated. Figure 6A. 4 provides a graph of the hypergeometric distribution:

Figure 6A.4: Hypergeometric Distribution

Note that the hypergeometric distribution converges on binomial distribution as the as the population size increases.

How symmetric is the data?

There are some datasets that exhibit symmetry, i.e., the upside is mirrored by the downside. The symmetric distribution that most practitioners have familiarity with is the normal distribution, sown in Figure 6A.6, for a range of parameters:

Figure 6A.6: Normal Distribution

The normal distribution has several features that make it popular. First, it can be fully characterized by just two parameters - the mean and the standard deviation - and thus reduces estimation pain. Second, the probability of any value occurring can be obtained simply by knowing how many standard deviations separate the value from the mean; the probability that a
value will fall 2 standard deviations from the mean is roughly 95%. The normal distribution is best suited for data that, at the minimum, meets the following conditions:
a. There is a strong tendency for the data to take on a central value.
b. Positive and negative deviations from this central value are equally likely
c. The frequency of the deviations falls off rapidly as we move further away from the central value.

The last two conditions show up when we compute the parameters of the normal distribution: the symmetry of deviations leads to zero skewness and the low probabilities of large deviations from the central value reveal themselves in no kurtosis.

There is a cost we pay, though, when we use a normal distribution to characterize data that is non-normal since the probability estimates that we obtain will be misleading and can do more harm than good. One obvious problem is when the data is asymmetric but another potential problem is when the probabilities of large deviations from the central value do not drop off as precipitously as required by the normal distribution. In statistical language, the actual distribution of the data has fatter tails than the normal. While all of symmetric distributions in the family are like the normal in terms of the upside mirroring the downside, they vary in terms of shape, with some distributions having fatter tails than the normal and the others more accentuated peaks. These distributions are characterized as leptokurtic and you can consider two examples. One is the logistic distribution, which has longer tails and a higher kurtosis (1.2, as compared to 0 for the normal distribution) and the other are Cauchy distributions, which also exhibit symmetry and higher kurtosis and are characterized by a scale variable that determines how fat the tails are. Figure 6A. 7 present a series of Cauchy distributions that exhibit the bias towards fatter tails or more outliers than the normal distribution.

Figure 6A.7: Cauchy Distribution

Either the logistic or the Cauchy distributions can be used if the data is symmetric but with extreme values that occur more frequently than you would expect with a normal distribution.

As the probabilities of extreme values increases relative to the central value, the distribution will flatten out. At its limit, assuming that the data stays symmetric and we put limits on the extreme values on both sides, we end up with the uniform distribution, shown in figure 6A.8:

Figure 6A.8: Uniform Distribution

When is it appropriate to assume a uniform distribution for a variable? One possible scenario is when you have a measure of the highest and lowest values that a data item can take but no real information about where within this range the value may fall. In other words, any value within that range is just as likely as any other value.

Most data does not exhibit symmetry and instead skews towards either very large positive or very large negative values. If the data is positively skewed, one common choice is the lognormal distribution, which is typically characterized by three parameters: a shape ($\square \square$ or sigma \square, a scale ($\square \square$ or median) and a shift parameter (θ). When $\mathrm{m}=0$ and $\theta \square 1$, you have the standard lognormal distribution and when $\theta \square 0$, the distribution requires only scale and sigma parameters. As the sigma rises, the peak of the distribution shifts to the left and the skewness in the distribution increases. Figure 6A. 9 graphs lognormal distributions for a range of parameters:

Figure 6A.9: Lognormal distribution

Figure 6A.13: Extreme Value Distributions

Are there upper or lower limits on data values?

There are often natural limits on the values that data can take on. As we noted earlier, the revenues and the market value of a firm cannot be negative and the profit margin cannot exceed 100%. Using a distribution that does not constrain the values to these limits can create problems. For instance, using a normal distribution to describe profit margins can sometimes result in profit margins that exceed 100%, since the distribution has no limits on either the downside or the upside.

When data is constrained, the questions that needs to be answered are whether the constraints apply on one side of the distribution or both, and if so, what the limits on values are. Once these questions have been answered, there are two choices. One is to find a continuous distribution that conforms to these constraints. For instance, the lognormal distribution can be used to model data, such as revenues and stock prices that are constrained to be never less than zero. For data that have both upper and lower limits, you could use the uniform distribution, if the probabilities of the outcomes are even across outcomes or a triangular distribution (if the data is clustered around a central value). Figure 6A. 14 presents a triangular distribution:

Figure 6A.14: Triangular Distribution

An alternative approach is to use a continuous distribution that normally allows data to take on any value and to put upper and lower limits on the values that the data can assume. Note that the cost of putting these constrains is small in distributions like the normal where the probabilities of extreme values is very small, but increases as the distribution exhibits fatter tails.

How likely are you to see extreme values of data, relative to the middle values?

As we noted in the earlier section, a key consideration in what distribution to use to describe the data is the likelihood of extreme values for the data, relative to the middle value. In the case of the normal distribution, this likelihood is small and it increases as you move to the logistic and Cauchy distributions. While it may often be more realistic to use the latter to describe real world data, the benefits of a better distribution fit have to be weighed off against the ease with which parameters can be estimated from the normal distribution. Consequently, it may make sense to stay with the normal distribution for symmetric data, unless the likelihood of extreme values increases above a threshold.

The same considerations apply for skewed distributions, though the concern will generally be more acute for the skewed side of the distribution. In other words, with positively skewed distribution, the question of which distribution to use will depend upon how much more likely large positive values are than large negative values, with the fit ranging from the lognormal to the exponential.

In summary, the question of which distribution best fits data cannot be answered without looking at whether the data is discrete or continuous, symmetric or asymmetric and where the outliers lie. Figure 6A. 15 summarizes the choices in a chart.

Tests of Normality

There are graphical tests of normality, where probability plots can be used to assess the hypothesis that the data is drawn from a normal distribution. Figure 6A. 17 illustrates this, usingcurrent PE ratios as the data set.

Given that the normal distribution is one of easiest to work with, it is useful to begin by testing data for non-normality to see if you can get away with using the normal distribution. If not, youcan extend your search to other and more complex distributions.

Statistical Distributions (e.g. Normal, Poisson, Binomial) and their uses

SMALL SAMPLES

Introduction When the sample size $\mathrm{n}<30$, then if is referred to as small samples. In this sampling distribution in many cases may not be normal ie., we will not be justified in estimating the population parameters as equal to the corresponding sample values.
Degree Of Freedom The number of independent variates which make up the statistic is known as the degrees of freedom (d.f) and it is denoted by P .
Example: If $x_{1}+x_{2}+x_{3}=50$ and we assign any values to two os the variables (say $\mathrm{x}_{1}, \mathrm{x}_{2}$), then the values of x_{3} will be known. Thus, the two variables are free and independent choices for finding the third.

In general, the number of degrees of freedom is equal to the total number of observations less the number of independent constraints imposed on the observations.
For example:in a set of data of n observations, if K is the number of independent constraints then $\mathrm{P}=n-k$

Student's t-Distribution Or t-Distribution

Let \bar{X} be the mean of a random sample of size n , taken from a normal population having the mean μ and the variance σ^{2}, and sample variance $S^{2}=\sum_{\mathrm{n}-1}^{\left(\mathrm{X}_{\mathrm{i}}-\mathrm{X}^{-}\right)^{2}}$, then
$t=\frac{x^{-}-\mu}{\mathrm{S} / \sqrt{\mathrm{n}}}$ is a random variable having the t-distribution with $\mathrm{P}=n-1$ degrees of freedom.

Properties of \boldsymbol{t} - Distribution

1. The shape of t-distribution is bell shaped, which is similar to that of normal distribution and is symmetrical about the mean.
2. The mean of the standard normal distribution as well as t-distribution is zero, but the variance of t-distrubution depends upon the parometer P which is called the degrees of freedom.
3. The variance of t-distribution exceeds 1 , but approaches 1 as $n \rightarrow \infty$.

t Distribution

The t-distribution is used when n is small and σ is unknown.

Applications of \boldsymbol{t} - Test

1. To test the significance of the sample mean, When population variance is not given:

Let $x^{\text {' }}$ be the mean of the sample and n be the size of the sample ' σ ' be the standard deviation of the population and μ be the mean of the population.
Then the student t-distribution is defined by the statistic

$$
t=\frac{x^{-}-\mu}{\sqrt{n-1}} \text { if } s \text { is given directly }
$$

If ' σ ' is unknown, then $t=\begin{aligned} & \mathrm{X}^{-}-\mu \text { where } \\ & \mathrm{S} / \sqrt{n}\end{aligned}$

$$
S^{2}=\Sigma \frac{\left(X_{\mathrm{i}}-\bar{X}\right)^{2}}{n-1}
$$

Note : Confidence limits for mean $\mu=\overline{\mathrm{x}} \pm \mathrm{t}_{\mathrm{a}}\left(\mathrm{S}_{\sqrt{\mathrm{n}}}^{n-1}\right)$ or $\mu=\overline{\mathrm{x}} \pm \mathrm{ta}_{\mathrm{a}}\left(\mathrm{S}_{\sqrt{\mathrm{n}-1}}\right)$
2. To test the significance of the difference between means of the two independent samples : To test the significant difference between the sample means $x^{-} 1$ and x^{-}2of two independent samples of sizes n_{1} and n_{2}, with the same variance.

We use statistic
$t=\frac{x_{1}^{-1}-x_{2}}{\sqrt{S^{2}\left(\frac{1}{n_{1}}+\frac{1}{n}\right)}} \cdots$ (1) where
$x_{1}^{-}=\frac{\sum \mathrm{x}_{1}}{\mathrm{n}_{1}}, x_{2}=\frac{\sum \mathrm{x}_{2}}{\mathrm{n}_{2}}$ and
$S^{2}=\frac{n_{1}}{n_{1}+n_{2}-2}\left[\sum\left(x_{1}^{n_{2}}-\overline{x_{1}}\right)^{2}+\sum\left(x_{2}-\overline{x_{2}}\right)^{2}\right.$

OR $\quad S^{2}=\frac{1}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}\left[\left(\begin{array}{ll}n_{1} S^{2}\end{array}\right)+\left(\begin{array}{ll}n & S^{2}\end{array}\right)\right]$
Where s_{1} and s_{2} are sample standard deviations.
Note: Confidence limits for difference of means : $\mu_{1}-\mu_{2}=\left(x^{-}{ }_{1}-x^{-}\right)^{2} \pm \tan _{a}\left(\sqrt{S^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}\right)$
3.Paired t - test (Test the significance of the difference between means of two dependent samples) :
Paired observations arise in many practical situations where each homogenous experimental unit receives both population condition.
For Example: To test the effectiveness of 'drug' some // person's blood pressure is measured before and after the intake of certain drug. Here the individual person is the experimental unit and the two populations are blood pressure "before" and "after" the drug is given Paired t -test is applied for n paired observations by taking the differences $\mathrm{d}_{1, \mathrm{~d}_{2}}$ \qquad d_{n} of the paired data. To test whether the differences d_{i} from a random sample of a population with mean μ.
$t=\frac{}{s / \sqrt{n}}$ where $d={ }_{\mathrm{n}}^{1} \epsilon d$ and $s^{2}=\frac{1}{\mathrm{n}-1} \sum_{(d-d)}$

Problems:

1. A sample of 26 bulbs gives a mean life of $\mathbf{9 9 0}$ hours with a S.D of $\mathbf{2 0}$ hours. The manufacturer claims that the mean life of bulbs is 1000 hours. Is the sample not upto the standard?

Sol: Given $\mathrm{n}=26$
$\bar{x}=990$
$\mu=1000$ and S.D i.e., $\mathrm{s}=20$
i) Null Hypothesis : $H_{0}: \mu=1000$
ii) Alternative Hypothesis: $H_{1}: \mu<1000$ (Left one tailed test) (Since it is given below standard)
iii) Level of significance : $\alpha=0.05$
t tabulated value with 25 degrees of freedom for left tailed test is 1.708
iv) Test Statistic : $t_{\text {cal }}=\frac{x^{-}-\mu}{\frac{s}{\sqrt{n-1}}}=\frac{990-1000}{\frac{20}{\sqrt{25}}}=-2.5$
v) Conclusion: Since $\left|t_{\text {cal }}\right|$ value $>t_{\alpha}$ value, we reject H_{0} Hence we conclude that the sample is not upto the standard.
2. A random sample of size 16 values from a normal population showed a mean of 53 and sum of squares of deviations from the mean equals to $\mathbf{1 5 0}$. Can this sample be regarded as taken from the population having 56 as mean? Obtain $\mathbf{9 5 \%}$ confidence limits of the mean of the population.?

Sol: a) Given $\mathrm{n}=16$
$\bar{x}=53$
$\mu=56$ and $\sum\left(x_{\mathrm{i}}-x^{-}\right)^{2}=150$
$\therefore S^{2}=\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}^{-}\right)^{2}}{\mathrm{n}-1}=\frac{150}{15}=10 \rightarrow \mathrm{~S}=\sqrt{ } 10$
Degrees of freedom $\mathrm{P}=\mathrm{n}-1=16-1=15$
i) Null Hypothesis $H_{0}: \mu=56$
ii) Alternative Hypothesis $H_{1}: \mu \neq 56$ (Two tailed test)
iii) Level of significance : $\alpha=0.05$
t tabulated value with 15 degrees of freedom for two tailed test is 2.13
iv) Test Statistic : $t_{\text {cal }}=\frac{x^{-}-\mu}{\frac{S}{\sqrt{n}}}=\frac{53-56}{\frac{\sqrt{10}}{\sqrt{15}}}=-3.79$
v) Conclusion: Since $\left|t_{\text {cal }}\right|$ value $>t_{\alpha}$ value, we reject H

Hence we conclude that the sample cannot be regarded as taken from population.
b) The 95% confidence limits of the mean of the population are given by

$$
\begin{aligned}
\bar{x} \pm t{ }_{0.05 \frac{\sqrt{\sqrt{n}}}{}} & 53 \pm 2.13 \times 0.79 \\
& =53 \pm 1.6827 \\
& =54.68 \text { and } 51.31
\end{aligned}
$$

$\therefore 95 \%$ confidence limits are (51.31, 54.68)
3. A random sample of 10 boys had the following I.Q's : 70, $\mathbf{1 2 0}, \mathbf{1 1 0}, \mathbf{1 0 1 , 8 8}, \mathbf{8 3}, 95,98,107$ and 100 .
a) Do these data support the assumption of a population mean I.Q of 100 ?
b) Find a reasonable range in which most of the mean I.Q values of samples of 10 boys lie
Sol: Since mean and s.d are not given
We have to determine these

x	$\mathrm{x}-\overline{\mathrm{x}}$	$(\mathrm{x}-\overline{\mathrm{x}})^{2}$
70	-27.2	739.84
120	22.8	519.84
110	12.8	163.84
101	3.8	14.44
88	-9.2	84.64
83	-14.2	201.64
95	-2.2	4.84
98	2.8	9.64 107 100
$\boldsymbol{y}=972$		7.84

Mean,$x^{-}=\frac{\sum \mathrm{x}}{\mathrm{n}}=\frac{972}{10}=97.2$ and
$S^{2}=\frac{1}{\mathrm{n}-1} \sum(\mathrm{x}-\overline{\mathrm{x}})^{2}=\underset{9}{1833.6}$
$\therefore \mathrm{S}=\sqrt{203.73}=14.27$
i) Null Hypothesis $H_{0}: \mu=100$
ii) Alternative Hypothesis $H_{1}: \mu \neq 100$ (Two tailed test)
iii) Level of significance : $\alpha=0.05$
t tabulated value with 9 degrees of freedom for two tailed test is 2.26
iv) Test Statistic: $t_{\text {cal }}=\frac{x^{-}-\mu}{\frac{S}{\sqrt{n}}}=\frac{97.2-100}{\frac{14.27}{\sqrt{10}}}=-0.62$
v) Conclusion: Since $\left|t_{\text {cal }}\right|$ value $<t_{\alpha}$ value, we accept H_{0}

Hence we conclude that the data support the assumption of mean I.Q of 100 in the population.
b) The 95% confidence limits of the mean of the population are given by
$\bar{x} \pm t_{0.05} \frac{\sqrt{\sqrt{n}}}{}=97.2 \pm 2.26 \times 4.512$
$0.05 \frac{\sqrt{n}}{}$

$$
\begin{aligned}
& =97.2 \pm 10.198 \\
& =107.4 \text { and } 87
\end{aligned}
$$

$\therefore 95 \%$ confidence limits are (87, 107.4)
4. Samples of two types of electric bulbs were tested for length of life and following data were obtained

Type 1	Type 2
Sample number,$n_{1}=8$	$n_{2}=7$
Sample mean $\overline{x_{1}}=1234$	$\overline{x_{2}}=1036$
Sample S.D,$s_{1}=36$	$s_{2}=40$

Is the difference in the mean sufficient to warrant that type 1 is superior to type 2 regarding length of life .
Sol: i) Null Hypothesis H_{0} : The two types of electric bulbs are identical
i.e., $H_{0}: \mu_{1}=\mu_{2}$
ii) Alternative Hypothesis H_{1} : $\mu_{1} \neq \mu_{2}$

Where $S^{2}=n 1 s 1^{2}{ }^{2} n_{1} s_{1}{ }^{2}$

$$
=\substack{n_{1}+n_{2} \\ 8+7-2}\left(8(36)^{2}+7(40)^{2}\right)=1659.08
$$

$\therefore \mathrm{t}=\frac{1234-1036}{\sqrt{1659.08\left(\frac{1}{8}+\frac{1}{7}\right)}}=9.39$
iv)Degrees of freedom $=8+7-2=13$,tabulated value of t for 13 d.f at 5% los is
$2.16 \mathrm{v})$ Conclusion: Since $\left|t_{\text {cal }}\right|$ value $>t_{\alpha}$ value, we reject H_{0}
Hence we conclude that the two types 1 and 2 of electric bulbs are not identical .
5. Two horses A and B were tested according to the time to run a particular track with the following results .

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	

Test whether the two horses have the same running capacity
Sol: Given $n_{1}=7, n_{2}=6$
We first compute the sample means and standard deviations
$x^{-}=$Mean of the first sample $=\frac{1}{7}(28+30+32+33+33+29+34)$
$=\frac{1}{7}(219)=31.286$
$\bar{y}=$ Mean of the second sample $=\frac{1}{6}(29+30+30+24+27+29)$
$=\frac{1}{6}(169)=28.16$

\mathbf{x}	$\mathbf{x}-\overline{\mathbf{x}}$	$(\mathbf{x}-\overline{\mathbf{x}})^{\mathbf{2}}$	\mathbf{y}	$\mathbf{y}-\overline{\mathbf{y}}$	$(\mathbf{y}-\overline{\mathbf{y}})^{\mathbf{2}}$
28	-3.286	10.8	29	0.84	0.7056
30	-1.286	1.6538	30	1.84	3.3856
32	0.714	0.51	30	1.84	3.3856
33	1.714	2.94	24	-416	17.3056
33	1.714	2.94	27	-1.16	1.3456
29	-2.286	5.226	29	0.84	0.7056
34	2.714	7.366			$\mathbf{\Sigma}(y-\bar{y})^{2}$ $=26.8336$
$\boldsymbol{\Sigma} x$ $=219$	$\mathbf{\Sigma}\left(x-x^{-}\right)^{2}$ $=31.4358$	$\mathbf{\Sigma y}$ $=169$			

Now $S^{2}=\frac{1}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}\left[\left(\sum\left(x-x^{-}\right)^{2}+\sum(y-y)^{2}\right]\right.$
$=\frac{1}{11}[31.4358+26.8336]$
$=\frac{1}{11}(58.2694)$
$=5.23$
$\therefore \mathrm{S}=\sqrt{5.23}=2.3$
i) Null Hypothesis $H_{0}: \mu_{1}=\mu_{2}$
ii) Alternative Hypothesis $H_{1}: \mu_{1} \neq \mu_{2}$
iii) Test Statistic $t_{\text {cal }}=\frac{x^{1-x^{-2}}}{S \sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{31.286-28.16}{2.3\left(\frac{\overline{7}+\frac{1}{7}}{\frac{7}{7}}\right)}=2.443$

$$
\therefore t_{\text {cal }}=2.443
$$

iv)Degrees of freedom $=7+6-2=11$

Tabulated value of t for 11 d.f at 5% los is 2.2
Conclusion: Since $\mid \mathrm{t}$ cal \mid value $>\mathrm{t}_{\mathrm{a}}$ value, we reject H_{0}
Hence we conclude that both horses do not have the same running capacity.
6. Ten soldiers participated in a shooting competition in the first week. After intensive training they participated in the competition in the second week. Their scores before and after training are given below :

Scores before	67	24	57	55	63	54	56	68	33	43
Scores after	70	38	58	58	56	67	68	75	42	38

Do the data indicate that the soldiers have been benefited by the training.
Sol: Given $n_{1}=10, n_{2}=10$
We first compute the sample means and standard deviations
$x^{-}=$Mean of the first sample $=\frac{1}{10}(67+24+57+55+63+54+56+68+33+43)$

$$
=\frac{1}{10}(520)=52
$$

$$
\begin{aligned}
& \bar{y}=\text { Mean of the second sample }=\frac{1}{10}(70+38+58+58+56+67+68+75+42+38) \\
& =\frac{1}{10}(570)=57
\end{aligned}
$$

x	$x-x^{-}$	$\left(x-x^{-}\right)^{2}$	y	$y-\bar{y}$	$(y-\bar{y})^{2}$
67	15	225	70	13	169
24	-28	784	38	-19	361
57	5	25	58	1	1
55	3	9	58	1	1
63	11	121	56	-1	1
54	2	4	67	10	100
56	4	16	68	11	121
68	16	256	75	18	324
33	-19	361	42	-15	225
43	-9	81	38	-19	361
$\sum x=520$		$\begin{aligned} & \sum(x \\ & \left.-x^{-}\right)^{2} \\ & =1882 \end{aligned}$	$\Sigma y=570$		$\begin{aligned} & \sum(y \\ & -\bar{y})^{2} \\ & =1664 \end{aligned}$

Now $S^{2}=\frac{1}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}\left[\left(\sum\left(x-x^{-}\right)^{2}+\sum(y-y)^{2}\right]\right.$
$=\frac{1}{18}[1882+1664]$
$=\frac{1}{18}(3546)$
= 197
$\therefore \mathrm{S}=\sqrt{197}=14.0357$
i) Null Hypothesis $H_{0}: \mu_{1}=\mu_{2}$
ii) Alternative Hypothesis $H_{1}: \mu_{1}<\mu_{2}$ (Left one tailed test)
iii) Test Statistic $t_{\text {cal }}=\frac{x^{-1}-x^{-}-2}{S \sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$

$$
=\frac{52-57}{14.0357\left(\sqrt{\frac{1}{10}+\frac{1}{10}}\right)}
$$

$$
=\frac{3546}{18}=-0.796
$$

$$
\therefore t_{\text {cal }}=-0.796
$$

iv)Degrees of freedom $=10+10-2=18$

Tabulated value of t for 18 d.f at 5% los is -1.734
Conclusion: Since $\mid \mathrm{t}$ cal| value $<\left|\mathrm{t}_{\mathrm{a}}\right|$ value, we accept H_{0}
Hence we conclude that the soldiers are not benefited by the training.
7. blood pressure of 5 women before and after intake of a certain drug are given below:

Before	110	120	125	132	125
After	120	118	125	136	121

Test whether there is significant change in blood pressure at $\mathbf{1 \%}$ los?
Sol: Given $n=5$
i) Null Hypothesis $H_{0}: \mu_{1}=\mu_{2}$
ii) Alternative Hypothesis $H_{1}: \mu_{1}<\mu_{2}$ (Left one tailed test)
iii) Test Statistic $t_{\text {cal }}=\frac{1}{s / \sqrt{n}}$ where $\overline{\mathrm{d}}=\frac{\sum \mathrm{d}}{\mathrm{n}}$ and $S^{2}=\frac{1}{\mathrm{n}-1} \sum\left(d-d^{-}\right)^{2}$

B.P before training	B.P after training	$d=y-x$	$d-d^{-}$	$\left(d-d^{-}\right)^{2}$
110	120	10	8	64
120	118	-2	-4	16
123	125	2	0	0
132	136	4	2	4
125	121	-4	-6	36
		$\sum d=10$		$\sum\left(d-d^{-}\right)^{2}=$ 120

$\therefore \bar{d}=\frac{10}{5}=2$ and $S^{2}={ }_{4}^{120}=30$
$\therefore \mathrm{S}=5.477$
$t_{\text {cal }}=\frac{\mathrm{d}^{-}}{5 / \sqrt{\mathrm{n}}}=\frac{2}{5.477} \sqrt{5}=0.862$
iv) Degrees of freedom $=5-1=4$

Tabulated value of t for 4 d.f at 1% los is 4.6
Conclusion: Since $\mid \mathrm{t}$ cal \mid value $<\left|\mathrm{t}_{\mathrm{a}}\right|$ value, we accept H_{0}
Hence we conclude that there is no significant difference in Blood pressure after intake of a certain drug.
8. Memory capacity of 10 students were tested before and after training. State whether the training was effective or not from the following scores.

Sol : i) Null Hypothesis $H_{0}: \mu_{1}=\mu_{2}$
ii) Alternative Hypothesis $H_{1}: \mu_{1}<\mu_{2}$ (Left one tailed test)
iii) Test Statistic $t_{\text {cal }}=\frac{1}{s / \sqrt{n}}$

$$
\text { where } \overline{\mathrm{d}}=\frac{\sum \mathrm{d}}{\mathrm{n}} \text { and } S^{2}=\frac{1}{\mathrm{n}-1} \sum\left(d-d^{-}\right)^{2}
$$

Before (x)	After (y)	$d=y-x$	d^{2}
12	15	-3	9
14	16	-2	4
11	10	1	1
8	7	1	1
7	5	2	4
10	12	-2	4
3	10	-7	49
0	2	-2	4
5	3	2	4
6	8	-2	4
		$\sum d$ $=-12$	$\sum d^{2}$ $=84$

$\bar{d}=\frac{-12}{10}=-1.2$
$S^{2}=\frac{84-(-1.2)^{2} \times 10}{9}=7.73$
$\therefore \mathrm{S}=2.78$
$t_{\text {cal }}=\frac{\mathrm{d}^{-}}{5 / \sqrt{\mathrm{n}}}=\frac{-1.2}{2.78}=-1.365$ and d.f $=\mathrm{n}-1=9$

Tabulated value of t for 9 d.f at 5% los is 1.833
Conclusion: Since $\mid \mathrm{t}$ cal \mid value $<\left|\mathrm{t}_{\mathrm{a}}\right|$ value , we accept H_{0}
Hence we conclude that there is no significant difference in memory capacity after the training program.

Chi-Square (χ^{2}) Distribution

Chi square distribution is a type of cumulative probability distribution . probability distributions provide the probability of every possible value that may occur. Distributions that are cumulative give the probability of a random variable being less than or equal to a particular value. Since the sum of the probabilities of every possible value must equal one, the total area under the curve is equal to one. Chi square distributions vary depending on the degrees of freedom. The degrees of freedom is found by subtracting one from the number of categories in the data.

Applications of Chi - Square Distribution:

Chi - Square test as a test of goodness of fit :

χ^{2} - test enables us to ascertain how well the theoretical distributions such as binomial, Poisson, normal etc, fit the distributions obtained from sample data. If the calculated value of χ^{2} is less than the table value at a specified level of generally 5% significance, the fit is considered to be good.
If the calculated value of χ^{2} is greater than the table value, the fit is considered to be poor.
i) Null hypothesis: H_{0} : There is no difference in given values and calculated values
ii) Altenative hypothesis: H_{1} : There is some difference in given values and calculated values

$$
(0-E)^{2}
$$

iii) Test Statistic $\chi_{\text {cal }}^{2}=\Sigma$

E
iv) At specified level of significance for $n-1$ d.f if the given problem is binomial distribution At specified level of significance for $\mathrm{n}-2$ d.f if the given problem is Poisson distribution v) Conclusion :If $\chi^{2}{ }_{\text {cal }}$ value $<\chi^{2}{ }_{\text {tab }}$ value, then we accept H_{0}, Otherwise reject H_{0}.

2. $\mathbf{C h i}$ - Square test for independence of attributes:

Definition : An attribute means a quality or characteristic
Eg: Drinking, Smoking, blindness, Honesty, beauty etc.,
An attribute may be marked by its presence or absence in a number of a given population.
Let us consider two attributes A and B.
A is divided into two classes and B is divided into two classes. The various cell frequencies can be expressed in the following table known as 2×2 contingency table.

a	b	$\mathrm{a}+\mathrm{b}$

c	d	$c+d$
$a+c$	$b+d$	$N=a+b+c+d$

The expected frequencies are given by
$E(a)=\frac{(a+c)(a+b)}{N}$
$E(b)=\frac{(b+c)(a+b)}{N}$
$E(c)=\frac{(a+c)(c+d)}{N}$
$E(d)=\frac{(b+d)(c+d)}{\left(O^{N}-E\right)^{2}}$

TUTORIAL QUESTIONS

1. Out of 800 families with 4 children each, how many could you expect to have i)three boys ii)five girls iii) 2 or 3 boys iv) at least 1 boy.
2. Suppose 2% of the people on the average are physically handicapped .Find
i) the probability of finding 3 or more Physically handicapped
ii) the probability of finding atmost 2 are handicapped
3. If X is a normal variate with mean 30 and variance 25 . Find i) $\mathrm{P}(26 \leq \mathrm{X} \leq 40)$ ii) $\mathrm{P}(\mathrm{X} \geq 45)$.
4. In a normal distribution, 7% of the items are under 35 and 89% are under 63 . Determine the mean and variance of the distribution.
5.Fit a Poisson distribution to the following data

x	0	1	2	3	4	5
f	142	156	69	27	5	1

ASSIGNMENT QUESTIONS

1. A sales tax officer has reported that the average sales of the 500 business that he has to deal with during a year is Rs. 36,000 with a standard deviation of Rs.10,000. Assuming that the sales in these business are normally distributed, find :
i) The number of business as the sales of which are greater than Rs. 40,000
ii) The percentage of business the sales of which are likely to range between Rs.30,000 and Rs.40,000
2. If the variance of a Poisson variate is 3 . Find the probability that
i) $P(x=0)$
ii) $P(1 \leq x \leq 4)$
iii) $\mathrm{P}(\mathrm{x}>2)$
3. The mean and SD of a normal variate are 8 and 4 respectively. Find i) $P(5 \leq x \leq 10)$ ii) $\mathrm{P}(\mathrm{x} \geq 5)$
4.Average number of accidents on any day on a national highway is 1.8 .determine the probability that the number of accidents are i) atleast one ii) at the most one iii) exactly one
5.If X is a normal variate, find
i) to the left of $Z=-1.78$
ii) to the right of $\mathrm{Z}=-1.45$
iii) corresponding to $-0.80 \leq Z \leq 1.53$
iv) to the left of $\mathrm{Z}=-2.52$ and to the right of $\mathrm{Z}=1.83$

UNIT-4 :

TESTS OF HYPOTHESES

- LARGE SAMPLE

SAMPLING

Introduction:

The totality of observations with which we are concerned, whether this number be finite or infinite constitute population. In this chapter we focus on sampling from distributions or populations and such important quantities as the sample mean and sample variance.

Definition: Population is defined as the aggregate or totality of statistical data forming a subject of investigation.
Example: The population of the heights of Indian.
The number of observations in the population is defined to be the size of the population. It may be finite or infinite. Size of the population is denoted by N. As the study of entire population may not be possible to carry out and hence a part of the population alone is selected.
Definition: A portion of the population which is examined with a view to determining the population characteristics is called a sample. In other words, sample is a subset of population. Size of the sample is denoted by n .
The process of selection of a sample is called Sampling. There are different methods of sampling
$>$ Probability Sampling Methods
> Non-Probability Sampling Methods

Probability Sampling Methods:

a) Random Sampling (Probability Sampling):

It is the process of drawing a sample from a population in such a way that each member of the population has an equal chance of being included in the sample.
Example: A hand of cards from a well shuffled pack of cards is a random sample.
Note: If N is the size of the population and n is the size of the sample, then
$>$ The no. of samples with replacement $=N^{\mathrm{n}}$
\Rightarrow The no. of samples without replacement $=N \mathrm{C}_{\mathrm{n}}$
b) Stratified Sampling :

In this , the population is first divided into several smaller groups called strata according to some relevant characteristics. From each strata samples are selected at random, all the samples are combined together to form the stratified sampling.
c) Systematic Sampling (Quasi Random Sampling):

In this method, all the units of the population are arranged in some order. If the population size is N, and the sample size is n, then we first define sample interval denoted by $=\frac{N}{n}$. then from first k items, one unit is selected at random. Then from first unit every $\mathrm{k}^{\text {th }}$ unit is serially selected combining all the selected units constitute a systematic sampling.

Non Probability Sampling Methods:

a) Purposive (Judgment) Sampling :

In this method, the members constituting the sample are chosen not according to some definite scientific procedure, but according to convenience and personal choice of the individual who selects the sample. It is the choice of the individual items of a sample entirely depends on the individual judgment of the investigator.
b) Sequential Sampling:

It consists of a sequence of sample drawn one after another from the population. Depending on the results of previous samples if the result of the first sample is not acceptable then second sample is drawn and the process continues to take proper decision . But if the first sample is acceptable ,then no new sample is drawn.

Classification of Samples:

$>$ Large Samples: If the size of the sample $\mathrm{n} \geq 30$, then it is said to be large sample.
$>$ Small Samples : If the size of the sample $\mathrm{n}<30$, then it is said to be small sample or exact sample.

Parameters and Statistics:

Parameter is a statistical measure based on all the units of a population. Statistic is a statistical measure based on only the units selected in a sample.
Note: In this unit, Parameter refers to the population and Statistic refers to sample.

Central Limit Theorem:

If x^{-}be the mean of a random sample of size n drawn from population having mean μ and standard deviation σ, then the sampling distribution of the sample mean x^{-}is approximately a normal distribution with mean μ and $\mathrm{SD}=\mathrm{S}$.E of $x^{-}=\frac{\sigma}{\sqrt{n}}$ provided the sample size n is large.
Standard Error of a Statistic: The standard error of statistic ' t ' is the standard deviation of the sampling distribution of the statistic i.e, S.E of sample mean is the standard deviation of the sampling distribution of sample mean.

Formulae for S.E:

$>$ S.E of Sample mean $x^{-}=\frac{\sigma}{\sqrt{n}}$ i.e, S.E $\left(x^{-}\right)=\frac{\sigma}{\sqrt{n}}$
$>$ S.E of sample proportion $\mathrm{p}=\sqrt{\frac{\overline{\mathrm{QQ}}}{\mathrm{n}}}$ i.e, S.E $(\mathrm{p})=\sqrt{\frac{\overline{\mathrm{PQ}}}{\mathrm{n}}}$ where $\mathrm{Q}=1-\mathrm{P}$
$>$ S.E of the difference of two sample means \bar{x} and \bar{x} i.e, $\mathrm{S} . \mathrm{E}\left(\underset{2}{\left(\bar{x}^{-1}\right.}-\bar{x}\right)=\sqrt{\frac{\sigma}{\sigma_{1}^{2}}+\frac{\sigma_{2}^{2}}{\mathrm{n}_{1}}}$
$>$ S.E of the difference of two proportions i.e, $\left.\Psi \not \equiv p_{1}-p_{2}\right)=\sqrt{\frac{P_{1} Q_{1}}{n_{1}}+\frac{\mathrm{P}_{2} \underline{Q}_{2}}{\mathrm{O}_{2}}}$
Estimation :To use the statistic obtained by the samples as an estimate to predict the unknown parameter of the population from which the sample is drawn.
Estimate : An estimate is a statement made to find an unknown population parameter.
Estimator : The procedure or rule to determine an unknown population parameter is called estimator.
Example: Sample proportion is an estimate of population proportion, because with the help of sample proportion value we can estimate the population proportion value.
Types of Estimation:
$>$ Point Estimation: If the estimate of the population parameter is given by a single value , then the estimate is called a point estimation of the parameter.
$>$ Interval Estimation: If the estimate of the population parameter is given by two different values between which the parameter may be considered to lie, then the estimate is called an interval estimation of the parameter.

Confidence interval Estimation of parameters:

In an interval estimation of the population parameter θ, if we can find two quantities t_{1} and t_{2} based on sample observations drawn from the population such that the unknown parameter θ is included in the interval [t_{1}, t_{2}] in a specified cases , then this is called a confidence interval for the parameter θ.
Confidence Limits for Population mean μ
$>95 \%$ confidence limits are $x^{-} \pm 1.96$ (S.E. of \bar{x})
$>99 \%$ confidence limits are $x^{-} \pm 2.58$ (S.E. of \bar{x})
$>99.73 \%$ confidence limits are $x^{-} \pm 3$ (S.E. of \bar{x})
$>90 \%$ confidence limits are $x^{-} \pm 1.645$ (S.E. of \bar{x})

Confidence limits for population proportion \mathbf{P}

$>95 \%$ confidence limits are $\mathrm{p} \pm 1.96$ (S.E.of p)
$>99 \%$ confidence limits are $\mathrm{p} \pm 2.58$ (S.E. of p)
$>99.73 \%$ confidence limits are $\mathrm{p} \pm 3$ (S.E.of p)
$>90 \%$ confidence limits are $\mathrm{p} \pm 1.645$ (S.E.of p)
Confidence limits for the difference of two population means μ_{1} and μ_{2}
$>95 \%$ confidence limits are $\left(\left(\bar{x}_{1}^{-}-\overline{x_{2}}\right) \pm 1.96\left(\right.\right.$ S.E of $\left(\left(\bar{x}_{1}^{-}-\overline{x_{2}}\right)\right)$
$>99 \%$ confidence limits are $\left(\left(\overline{x_{1}}-\overline{x_{2}}\right) \pm 2.58\left(\mathrm{~S} . \mathrm{E}\right.\right.$ of $\left(\left(\bar{x}_{1}^{-}-\overline{x_{2}}\right)\right)$
$>99.73 \%$ confidence limits are $\left(\left(\overline{x_{1}^{-}}-\overline{x_{2}}\right) \pm 3\right.$ (S.E of $\left(\left(\bar{x}_{1}^{-}-\overline{x_{2}}\right)\right)$
$>90 \%$ confidence limits are $\left(\left(\overline{x_{1}}-\overline{x_{2}}\right) \pm 2.58\left(\right.\right.$ S.E of $\left(\left(\bar{x}_{1}-\overline{x_{2}}\right)\right)$

Confidence limits for the difference of two population proportions

$>95 \%$ confidence limits are $p_{1}-p_{2} \pm 1.96$ (S.E. of $p_{1}-p_{2}$)
$>99 \%$ confidence limits are $p_{1-} p_{2} \pm 2$. 58 (S.E. of $p_{1}-p_{2}$)
$>99.73 \%$ confidence limits are $p_{1-p_{2}} \pm 3$ (S.E. of $p_{1-} p_{2}$)
$>90 \%$ confidence limits are $p_{1-} p_{2} \pm 1.645$ (S.E. of $p_{1}-p_{2}$)

Determination of proper sample size

Sample size for estimating population mean :
$\mathrm{n}=\left(\frac{-\alpha}{}{ }^{2}\right.$ where $z-$ Critical value of z at α Level of significance
E
α
$\sigma-$ Standard deviation of population and
$\mathrm{E}-$ Maximum sampling Error $=x^{-}-\mu$
Sample size for estimating population proportion :
$n=\frac{\mathrm{Z}_{\alpha}{ }^{2} \mathrm{PQ}}{\mathrm{E}^{2}}$ where $\mathrm{Z}_{\alpha}-$ Critical value of z at α Level of significance
P - Population proportion
Q-1-P
$E-$ Maximum Sampling error $=\mathrm{p}-\mathrm{P}$
Testing of Hypothesis :It is an assumption or supposition and the decision making procedure about the assumption whether to accept or reject is called hypothesis testing .
Statistical Hypothesis: To arrive at decision about the population on the basis of sample information we make assumptions about the population parameters involved such assumption is called a statistical hypothesis .

PROCEDURE FOR TESTING A HYPOTHESIS:

Test of Hypothesis involves the following steps:
Step1: Statement of hypothesis :
There are two types of hypothesis :
$>$ Null hypothesis: A definite statement about the population parameter. Usually a null hypothesis is written as no difference, denoted by H_{0}.
Ex. $H_{0}: \mu=\mu_{0}$
$>$ Alternative hypothesis: A statement which contradicts the null hypothesis is called alternative hypothesis. Usually an alternative hypothesis is written as some difference , denoted by H_{1}.
Setting of alternative hypothesis is very important to decide whether it is two-tailed or one - tailed alternative, which depends upon the question it is dealing.

Ex. $H_{1}: \mu \neq \mu_{0}$ (Two - Tailed test)
or
$H_{1}: \mu>\mu_{0}$ (Right one tailed test)
or
$H_{1}: \mu<\mu_{0}$ (Left one tailed test)

Step 2: Specification of level of significance :

The LOS denoted by α is the confidence with which we reject or accept the null hypothesis. It is generally specified before a test procedure, which can be either $5 \%(0.05), 1 \%$ or 10% which means that thee are about 5 chances in 100 that we would reject the null hypothesis H_{0} and the remaining 95% confident that we would accept the null hypothesis H_{0}. Similarly, it is applicable for different level of significance.

Step 3 : Identification of the test Statistic :

There are several tests of significance like z,t, F etc .Depending upon the nature of the information given in the problem we have to select the right test and construct the test criterion and appropriate probability distribution.

Step 4: Critical Region:

It is the distribution of the statistic.
$>$ Two - Tailed Test : The critical region under the curve is equally distributed on both sides of the mean.
If H_{1} has \neq sign , the critical region is divided equally on both sides of the distribution.
$>$ One Tailed Test: The critical region under the curve is distributed on one side of the

mean.
Left one tailed test: If H_{1} has <sign, the critical region is taken in the left side of the distribution.

Right one tailed test : If H_{1} has $>$ sign , the critical region is taken on right side of the distribution.

(+)

Step 5 : Making decision:

By comparing the computed value and the critical value decision is taken for accepting or rejecting H_{0}
If calculated value \leq critical value, we accept H_{0}, otherwise reject H_{0}.

Errors of Sampling :

While drawing conclusions for population parameters on the basis of the sample results, we have two types of errors.
$>$ Type I error : Reject H_{0} when it is true i.e, if the null hypothesis H_{0} is true but it is rejected by test procedure.
$>$ Type II error : Accept H_{0} when it is false i.e, if the null hypothesis H_{0} is false but it is accepted by test procedure.

DECISION TABLE

	H_{0} is accepted	H_{0} is rejected
H_{0} is true	Correct Decision	Type I Error
H_{0} is false	Type II Error	Correct Decision

Problems:

1.If the population is $\mathbf{3 , 6 , 9 , 1 5 , 2 7}$
a) List all possible samples of size 3 that can be taken without replacement from finite population
b) Calculate the mean of each of the sampling distribution of means
c) Find the standard deviation of sampling distribution of means

Sol: Mean of the population, $\mu=\frac{3+6+9+15}{5}=\frac{60}{5}=12$
Standard deviation of the population,

$$
\begin{aligned}
\sigma= & \sqrt{ } \frac{(3-12)^{2}+(6-12)^{2}+(9-12)^{2}+(15-12)^{2}+(27-12)^{2}}{5} \\
& =\sqrt{\frac{\sqrt{81+36+9+9+225}}{5}}=\sqrt{\frac{360}{5}}=8.4853
\end{aligned}
$$

a) Sampling without replacement:

The total number of samples without replacement is $N \mathrm{C}_{\mathrm{n}}=5 \mathrm{c}_{3}=10$

The 10 samples are $(3,6,9),(3,6,15),(3,9,15),(3,6,27),(3,9,27),(3,15,27),(6,9,15)$, $(6,9,27),(6,15,27),(9,15,27)$
b) Mean of the sampling distribution of means is
$\mu_{\mathrm{x}}=\frac{6+8+9+10+12+13+14+15+16+17}{10}=\frac{120}{10}=12$
c)

$$
\begin{aligned}
& \sigma^{2}=\frac{(6-12)^{2}+(8-12)^{2}+(9-1)^{2}+(10-12)^{2}+(12-1)^{2}+(13-)^{2}+(14-)^{2}+(15-1)^{2}+(16-)^{2}+(17-12)^{2}}{10} \\
&=13.3 \\
& \quad \therefore \sigma_{\mathrm{x}}=\sqrt{13.3}=3.651
\end{aligned}
$$

2.A population consist of five numbers $\mathbf{2 , 3 , 6 , 8}$ and 11. Consider all possible samples of size two which can be drawn with replacement from this population .Find
a) The mean of the population
b) The standard deviation of the population
c) The mean of the sampling distribution of means and
d) The standard deviation of the sampling distribution of means

Sol:a) Mean of the Population is given by
$\mu=\frac{2+3+6+8+1}{5}=\frac{30}{5}=6$
b) Variance of the population is given by
$\sigma^{2}=\sum \frac{\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}^{-}\right)^{2}}{\mathrm{n}}$

$$
\begin{aligned}
& =\frac{(2-6)^{2}+(3-6)^{2}+(6-6)^{2}+(8-6)^{2}+(11-6)^{2}}{5} \\
& =\frac{16+9+0+4+}{5}=10.8 \quad \therefore \sigma=3.29
\end{aligned}
$$

c) Sampling with replacement

The total no.of samples with replacement is $N^{n}=5^{2}=25$
\therefore List of all possible samples with replacement are

$$
\begin{gathered}
(2,2),(2,3),(2,6),(2,8),(2,11),(3,2),(3,3)(3,6),(3,8),(3,11) \\
\{(6,2),(6,3),(6,6),(6,8),(6,11),(8,2),(8,3),(8,6),(8,8),(8,11)\}
\end{gathered}
$$

$$
(11,2),(11,3),(11,6),(11,8),(11,11)
$$

Now compute the arithmetic mean for each of these 25 samples which gives rise to the distribution of means of the samples known as sampling distribution of means The samples means are

$$
\begin{gathered}
2,2.5,4,5,6.5 \\
2.5,3,4.5,, 5.5,7 \\
4,4.5,6,7,8.5 \\
5,5.5,7,8,9.5 \\
6.5,7,8.5,9.5,11
\end{gathered}
$$

And the mean of sampling distribution of means is the mean of these 25 means $\mu_{\mathrm{x}}=\frac{\text { sum of all above sample means }}{25}=\frac{150}{25}=6$
d) The variance of the sampling distribution of means is obtained by subtracting the mean 6 from each number in sampling distribution of means and squaring the result ,adding all 25 numbers thus obtained and dividing by 25 .
$\sigma^{2}=\frac{(2-6)^{2}+(2.5-6)^{2}+(4-6)^{2}+(5-6)^{2}+\cdots \ldots \ldots(11-6)^{2}}{25}=\frac{135}{25}=5.4$
$\therefore \sigma=\sqrt{5.4}=2.32$
3. When a sample is taken from an infinite population, what happens to the standard error of the mean if the sample size is decreased from 800 to 200

Sol: The standard error of mean $=\frac{\sigma}{\sqrt{n}}$
Sample size $=\mathrm{n}$.let $\mathrm{n}=n_{1}=800$
Then S.E $1=\frac{\sigma}{\sqrt{800}}=\frac{\sigma}{20 \sqrt{2}}$
When n_{1} is reduced to 200
let $\mathrm{n}=n_{2}=200$
Then S.E $2=\frac{\sigma}{\sqrt{200}}=\frac{\sigma}{z 0 \sqrt{2}}$
$\therefore S_{2} E_{2}=\frac{\sigma}{10 \sqrt{2}}=2\left(\frac{{ }_{2}}{20 \sqrt{2}}=2\left(S . E_{1}\right)\right.$
Hence if sample size is reduced from 800to 200, S. E. of mean will be multiplied by 2
4.The variance of a population is 2 . The size of the sample collected from the population is
169. What is the standard error of mean

Sol: $\mathrm{n}=$ The size of the sample $=169$

$$
\begin{aligned}
& \sigma=\text { S.D of population }=\sqrt{\text { Variance }}=\sqrt{2} \\
& \text { Standard Error of mean }=\frac{\sigma}{\sqrt{n}}=\frac{\sqrt{2}}{\sqrt{169}}=\frac{1.41}{13}=0.185
\end{aligned}
$$

5.The mean height of students in a college is 155 cms and standard deviation is 15 . What is the probability that the mean height of $\mathbf{3 6}$ students is less than 157 cms .
Sol: $\mu=$ Mean of the population

$$
\begin{aligned}
& =\text { Mean height of students of a college }=155 \mathrm{cms} \\
\mathrm{n} & =\text { S.D of population }=15 \mathrm{cms}
\end{aligned}
$$

$\bar{x}=$ mean of sample $=157 \mathrm{cms}$

$$
\text { Now } z=\frac{x^{-}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{157-155}{\frac{15}{\sqrt{36}}}=\frac{12}{15}=0.8
$$

$\therefore \mathrm{P}\left(x^{-} \leq 157\right)=\mathrm{P}(\mathrm{z}<0.8)=0.5+\mathrm{P}(0 \leq \mathrm{z} \leq 0.8)$

$$
=0.5+0.2881=0.7881
$$

Thus the probability that the mean height of 36 students is less than $157=0.7881$
6. A random sample of size 100 is taken from a population with $\sigma=5.1$. Given that the sample mean is $\bar{x}=\mathbf{2 1 . 6}$ Construct a 95% confidence limits for the population mean .
Sol: Given $x^{-}=21.6$

$$
\begin{aligned}
& Z \alpha / 2=1.96, \mathrm{n}=100, \sigma=5.1 \\
& \therefore \text { Confidence interval }=\left(x^{-}-Z \alpha / 2 \cdot \frac{\sigma}{\sqrt{n}}, x^{-}+Z \alpha / 2 \cdot \frac{\sigma}{\sqrt{n}}\right) \\
& x^{-}-Z \alpha / 2 \cdot \frac{\sigma}{\sqrt{n}}=21.6-\frac{1.96 \times 5.1}{1.90 \times 5.1}=20.6 \\
& x^{-}+Z \alpha / 2 \cdot \frac{1}{\sqrt{n}}=21.6+\frac{10}{10}=22.6
\end{aligned}
$$

Hence $(20.6,22.6)$ is the confidence interval for the population mean μ
7.It is desired to estimate the mean time of continuous use until an answering machine will first require service. If it can be assumed that $\sigma=\mathbf{6 0}$ days, how large a sample is needed so that one will be able to assert with $\mathbf{9 0 \%}$ confidence that the sample mean is off by at most 10 days.
Sol: We have maximum error $(\mathrm{E})=10$ days , $\sigma=60$ days and $z \alpha / 2=1.645$

$$
\therefore \mathrm{n}=\left[\frac{\mathrm{z}_{\alpha} / 2 \cdot \sigma}{\mathrm{E}}\right]^{2}=\left[\frac{1.645 \times 60}{10}\right]^{2}=97
$$

8. A random sample of size 64 is taken from a normal population with $\boldsymbol{\mu}=51.4$ and $\sigma=$ 6.8.What is the probability that the mean of the sample will a) exceed $52.9 \quad$ b) fall between 50.5 and 52.3 c) be less than 50.6
Sol: Given $\mathrm{n}=$ the size of the sample $=64$
$\mu=$ the mean of the population $=51.4$
$\sigma=$ the S.D of the population $=6.8$
a) $\mathrm{P}(\bar{x}$ exceed 52.9$)=\mathrm{P}(\bar{x}>52.9)$
$\mathrm{Z}=\frac{\mathrm{x}^{-}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{52.9-51.4}{\frac{6.8}{\sqrt{54}}}=1.76$
$\therefore \mathrm{P}(\bar{x}>52.9)=\mathrm{P}(\mathrm{z}>1.76)$

$$
\begin{aligned}
& =0.5-\mathrm{P}(0<\mathrm{z}<1.76) \\
& =0.5-0.4608=0.0392
\end{aligned}
$$

b) $\mathrm{P}\left(x^{-}\right.$fall between 50.5 and 52.3)

$$
\begin{aligned}
& \text { i.e, } \mathrm{P}\left(50.5<x^{-}<52.3\right)=\mathrm{P}\left(\overline{x_{1}}<x^{-}<\overline{x_{2}}\right) \\
& Z_{1}=\frac{-\mathrm{x}^{-1}--\mu}{\frac{5}{\sqrt{n}}}=\frac{50.5-51.4}{0.85}=-1.06 \\
& Z_{2}=\frac{\bar{x}^{-} 2^{-}-\mu}{\frac{0}{\sqrt{n}}}=\frac{52.3-51.4}{0.85}=1.06 \\
& \mathrm{P}\left(50.5<x^{-}<52.3\right)=\mathrm{P}(-1.06<\mathrm{z}<1.06) \\
& =\mathrm{P}(-1.06<\mathrm{z}<0)+\mathrm{P}(0<\mathrm{z}<1.06) \\
& =\mathrm{P}(0<\mathrm{z}<1.06)+\mathrm{P}(0<\mathrm{z}<1.06) \\
& =2(0.3554)=0.7108
\end{aligned}
$$

c) $\mathrm{P}\left(x^{-}\right.$will be less than 50.6$)=\mathrm{P}(\bar{x}<50.6)$

$$
\begin{aligned}
& \mathrm{Z}=\frac{\mathrm{x}^{-}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{50.6-51.4}{\frac{6.8}{\sqrt{64}}}=-0.94 \\
& \therefore \mathrm{P}(\mathrm{z}<-0.94)=0.5-\mathrm{P}(0.94<\mathrm{z}<0) \\
& =0.5-\mathrm{P}(0<\mathrm{z}<0.94)=0.50-0.3264 \\
& =0.1736
\end{aligned}
$$

9.The mean of certain normal population is equal to the standard error of the mean of the samples of 64 from that distribution. Find the probability that the mean of the sample size 36 will be negative.
Sol: The Standard error of mean $=\frac{\sigma}{\sqrt{n}}$
Sample size, $\mathrm{n}=64$
Given mean , $\mu=$ Standard error of the mean of the samples

$$
\mu=\frac{\sigma}{\sqrt{64}}=\frac{\sigma}{8}
$$

We know $\mathrm{z}=\frac{\overline{\mathrm{x}}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{\mathrm{x}^{-}-\frac{\sigma}{8}}{\frac{\sigma}{6}}$

$$
=\frac{6 x^{-}}{\sigma}-\frac{3}{4}
$$

If $Z<0.75, \bar{x}$ is negative

$$
\begin{aligned}
\mathrm{P}(\mathrm{z}<0.75) & =\mathrm{P}(-\infty<z<0.75) \\
& =\mathbf{f}_{-\infty}^{0} \phi(z) \mathrm{dz}+\mathrm{f}_{0}^{0.75} \emptyset(z) \mathrm{dz}=0.50+0.2734 \\
& =0.7734
\end{aligned}
$$

10. The guaranteed average life of a certain type of electric bulbs is 1500 hrs with a S.D of $\mathbf{1 0}$ hrs. It is decided to sample the output so as to ensure that 95% of bulbs do not fall short of the guaranteed average by more than 2%. What will be the minimum sample size ?
Sol : Let n be the size of the sample
The guaranteed mean is 1500
We do not want the mean of the sample to be less than 2% of (1500)i.e, 30 hrs So $1500-30=1470$
$\therefore x^{-}>1470$
$\therefore|z|=\left|\frac{x^{-}-\mu}{\frac{\sigma}{\sqrt{n}}}\right|=\left|\frac{1470-1500}{\frac{120}{\sqrt{n}}}\right|=\frac{\sqrt{n}}{4}$
From the given condition, the area of the probability normal curve to the left of $\frac{\sqrt{ }^{\pi}}{4}$ should be 0.95
\therefore The area between 0 and $\frac{\sqrt{n}}{4}$ is 0.45
We do not want to know about the bulbs which have life above the guranteed life.

$$
\begin{aligned}
& \therefore \frac{\sqrt{\pi}}{4}=1.65 \text { i.e., } \sqrt{n}=6.6 \\
& \therefore \mathrm{n}=44
\end{aligned}
$$

11. A normal population has a mean of 0.1 and standard deviation of 2.1 . Find the probability that mean of a sample of size 900 will be negative .
Sol : Given $\mu=0.1, \sigma=2.1$ and $\mathrm{n}=900$
The Standard normal variate
$\mathrm{Z}=\frac{\mathrm{x}^{-}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{\mathrm{x}^{-}-\mu}{\frac{2.1}{\sqrt{900}}}=\frac{\mathrm{x}^{-}-0.1}{0.07}$
$\therefore x^{-}=0.1+0.007 \mathrm{z}$ where $\mathrm{z} \sim \mathrm{N}(0,1)$
\therefore The required probability, that the sample mean is negative is given by

$$
\begin{aligned}
P(\bar{x}<0) & =\mathrm{P}(0.1+0.07 \mathrm{z}<0) \\
& =\mathrm{P}(0.07 \mathrm{z}<-0.1) \\
& =\left(\frac{\mathrm{z}}{0.0} 0\right. \\
& =\mathrm{P}(\mathrm{z}<-1.43) \\
& =0.50-\mathrm{P}(0<\mathrm{z}<1.43) \\
& =0.50-0.4236=0.0764
\end{aligned}
$$

12. In a study of an automobile insurance a random sample of $\mathbf{8 0}$ body repair costs had a mean of Rs $\mathbf{4 7 2 . 3 6}$ and the S.D of Rs 62.35. If \bar{x} is used as a point estimator to the true average repair costs, with what confidence we can assert that the maximum error doesn't exceed Rs 10.
Sol : Size of a random sample, $\mathrm{n}=80$
The mean of random sample,$x^{-}=$Rs 472.36
Standard deviation , $\sigma=$ Rs 62.35
Maximum error of estimate,$E_{\text {max }}=$ Rs 10
We have $E_{\text {max }}=Z \alpha / 2 \cdot \frac{\sigma}{\sqrt{n}}$
i.e., $Z \alpha / 2=\frac{\mathrm{E}_{\max } \cdot \sqrt{\mathrm{n}}}{\sigma}=\frac{10 \sqrt{80}}{62.35}=\frac{89.4427}{62.35}=1.4345$
$\therefore Z \alpha / 2=1.43$
The area when $\mathrm{z}=1.43$ from tables is 0.4236
$\therefore \frac{\alpha}{2}=0.4236$ i.e ., $\alpha=0.8472$
\therefore confidence $=(1-\alpha) 100 \%=84.72 \%$
Hence we are 84.72% confidence that the maximum error is Rs. 10
13. If we can assert with 95% that the maximum error is 0.05 and $P=0.2$ find the size of the sample.
Sol : Given $\mathrm{P}=0.2, \mathrm{E}=0.05$
We have $\mathrm{Q}=0.8$ and $Z \alpha / 2=1.96$ (5% LOS)

We know that maximum error, $\mathrm{E}=Z_{\alpha / 2} \sqrt{\frac{\mathrm{PQ}}{\mathrm{n}}}$
$\rightarrow 0.05=1.96 \sqrt{\frac{0.2 \times 0.8}{n}}$
\rightarrow Sample size , $\left.\mathrm{n}=\frac{\mathrm{n}}{0.2 \times 0.8 \mathrm{x}(1.96)^{2}}(0.05)^{2}\right)=246$
14. The mean and standard deviation of a population are 11,795 and 14,054 respectively What can one assert with $\mathbf{9 5} \%$ confidence about the maximum error if $\bar{x}=11,795$ and $\mathbf{n}=\mathbf{5 0}$. And also construct $\mathbf{9 5 \%}$ confidence interval for true mean .
Sol: Here mean of population,$\mu=11795$
S.D of population , $\sigma=14054$

$$
x^{-}=11795
$$

$$
n=\text { sample size }=50, \text { maximum error }=Z \alpha / 2 \cdot \frac{\sigma}{\sqrt{\pi}}
$$

$$
Z \alpha / 2 \text { for } 95 \% \text { confidence }=1.96
$$

$$
\text { Max. error, } E=Z \alpha / 2 \cdot \frac{\sigma}{\sqrt{n}}=1.96 \cdot \frac{14054}{\sqrt{50}}=3899
$$

$$
\therefore \text { Confidence interval }=\left(x^{-}-Z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, x^{-}+Z \alpha / 2 \frac{\sigma}{\sqrt{n}}\right)
$$

$$
=(11795-3899,11795+3899)
$$

$$
=(7896,15694)
$$

15. Find 95% confidence limits for the mean of a normally distributed population from which the following sample was taken $15,17,10,18,16,9,7,11,13,14$.
Sol: We have $x^{-}=\frac{15+17+10+18+16+9+7+11+13+14}{10}=13$

$$
\begin{gathered}
S^{2}=\sum \frac{\left(x_{i}-x^{-}\right)^{2}}{n-1} \\
=\quad \frac{1}{9}\left[(15-13)^{2}+(15-13)^{2}+(15-13)^{2}+(15-13)^{2}+(15-13)^{2}+\right. \\
\left.(15-13)^{2}+(15-13)^{2}+(15-13)^{2}+(15-13)^{2}+(15-13)^{2}\right] \\
=\frac{40}{3}
\end{gathered}
$$

Since $Z \alpha / 2=1.96$, we have
$Z \alpha / 2 \cdot \frac{s}{\sqrt{11}^{11}}=1.96 \cdot \frac{\sqrt{40}}{\sqrt{\# \#} \sqrt{2}^{2}}=2.26$
\therefore Confidence limits are $x^{-} \pm Z \alpha / 2 \cdot \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}=13 \pm 2.26=(10.74,15.26)$
16. A random sample of 100 teachers in a large metropolitan area revealed mean weekly salary of Rs. 487 with a standard deviation Rs.48. With what degree of confidence can we assert that the average weekly of all teachers in the metropolitan area is between 472 to 502 ?

Sol: Given $\mu=487, \sigma=48, n=100$

$$
\begin{aligned}
Z & =\frac{x^{-}-\mu}{\frac{\sigma}{\sqrt{n}}} \\
& =\frac{x^{-}-487}{\frac{48}{\sqrt{100}}}=\frac{x^{-}-487}{4.8}
\end{aligned}
$$

Standard variable corresponding to Rs. 472 is

$$
Z_{1}=\frac{472-487}{4.8}=-3.125
$$

Standard vaiable corresponding to Rs. 502

$$
Z_{2}=\frac{502-487}{4.8}=3.125
$$

Let \bar{x} be the mean salary of teacher. Then

$$
\begin{aligned}
\mathrm{P}(472<\overline{\mathrm{x}}<502) & =\mathrm{P}(-3.125<\mathrm{z}<3.125) \\
& =2(0<\mathrm{z}<3.125) \\
& =2 \mathrm{f}_{0}^{3.125} \emptyset(z) d z \\
& =2(0.4991)=0.9982
\end{aligned}
$$

Thus we can ascertain with 99.82% confidence
17. Measurements of the weights of a random sample of 200 ball bearing mad by a certain machine during one week showed a mean of 0.824 and a standard deviation of 0.042 . Find maximum error at 95% confidence interval? Find the confidence limits for the mean $\bar{x}=32$
Sol. We are given $\bar{x}=0.824$
$Z \alpha / 2=1.96 \quad, \sigma=0.042 \quad, \mathrm{n}=200$
Maximum error, $\mathrm{E}=Z \alpha / 2 \cdot \frac{\sigma}{\sqrt{\mathrm{n}}}=\frac{1.96 \times 0.042}{\sqrt{200}}=0.0059$
Now $\bar{x}-Z_{\alpha} / 2 \cdot \frac{\overline{\sqrt{n}}}{}=0.824-0.0059=0.8181$
and $\bar{x}+Z \alpha / 2 \cdot \frac{\sigma}{\sqrt{n}}=0.824+0.0059=0.8299$
Hence the limits for the confidence are
$\bar{x}-Z \alpha / 2 \cdot \frac{\overline{\sqrt{n}}}{}<\mu<\bar{x}+Z \alpha / 2 \cdot \overline{\sqrt{n}}$
\therefore confidence limits are 0.8181 and 0.8299
18. A population consists of $5,10,14,18,13,24$. Consider all possible samples of size two which can be drawn without replacement from the population. Find
a) The mean of the population
b) The standard deviation of the population
c) The mean of the sampling distribution of means
d) The standard deviation of sampling distribution of means

Sol. a) The mean of the population μ is given by
$\mu=\frac{\sum \mathrm{x}}{\mathrm{n}}=\frac{5+10+14+18+13+2}{6}=\frac{84}{6}=14$
b) Variance of the population σ^{2} is given by
$\sigma^{2}=\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}^{-}\right)^{2}}{\mathrm{n}}=\frac{1}{6}\left[(5-14)^{2}+(10-14)^{2}+(14-14)^{2}+(18-14)^{2}+(13-\right.$ $\left.14)^{2}+(24-14)^{2}\right]$
$=\frac{214}{6}=35.67$
c) All possible samples of size two i.e, $6 \mathrm{c}_{2}=15$ samples and their means are shown in the following table

Sample No.	Sample values	Total of Sample values	Sample mean
1	5,10	15	7.5
2	5,14	19	9.5
3	5,18	23	11.5
4	5,13	18	9
5	5,24	29	14.5
6	10,14	24	12

7	10,18	28	14
8	10,13	23	11.5
9	10,24	34	17
10	14,18	32	16
11	14,13	27	13.5
12	14,24	38	19
13	18,13	31	15.5
14	18,24	42	21
15	13,24	37	18.5
Total			210

\therefore Mean of sample means $\mu_{\mathrm{x}}=\frac{210}{15}=14$
d) The variance of sampling distribution of means
$\sigma_{x}^{2}=\frac{1}{15}\left[(7.5-14)^{2}+(9.5-14)^{2}+(11.5-14)^{2}+(9-14)^{2}+(14.5-14)^{2}+\right.$
$(12-14)^{2}+(14-14)^{2}+(11.5-14)^{2}+(17-14)^{2}+(16-14)^{2}+(13.5-$
$\left.14)^{2}+(19-14)^{2}+(15.5-14)^{2}+(21-14)^{2}+(18.5-14)^{2}\right]$
$=\quad \frac{1}{15}[42.25+20.25+6.25+25+0.25+4+0+6.25+9+4+0.25+25+$
$2.25+49+2.025]$
$=\frac{214}{15}=14.2666$
\therefore Standard deviation of sampling distribution of means is $\sigma_{\mathrm{x}} \sqrt{14.2666}=3.78$
Large Samples: Let a random sample of size $\mathrm{n}>30$ is defined as large sample.

Applications of Large Samples

Test of Significance of a Single Mean

Let a random sample of size $\mathrm{n}, \overline{\mathrm{x}}$ be the mean of the sample and μ be the population mean.

1. Null hypothesis: H_{0} : There is no significant difference in the given population mean value say ' μ_{0}.
i. $\mathrm{e} H_{0}: \mu=\mu_{0}$
2. Alternative hypothesis: H_{1} :There is some significant difference in the given population mean value.
i.ea) $H_{1}: \mu \neq \mu_{0}$ (Two -tailed)
b) $H_{1}: \mu>\mu_{0}$ (Right one tailed)
c) $H_{1}: \mu>\mu_{0}$ (Left one tailed)
3. Level of significance ${ }_{X}$ Set the tor $\alpha^{\mu_{0}}$ the
4. Test Statistic: $z_{\text {cal }}=\frac{\frac{x}{-\mu} / \sqrt{n}}{\sigma /(O R)} z_{\text {cal }}=\frac{\mathrm{x}^{-}-\mu_{0}}{\sqrt{\mathrm{~s}} \sqrt{\mathrm{n}}}$
5. Decision /conclusion : Ifzcalvalue $<Z_{\alpha}$ value, accept H_{0} otherwise reject H_{0}

CRITICAL VALUES OF Z

LOS \propto	1%	5%	10%
$\mu \neq \mu_{0}$	$\|Z\|>2.58$	$\|Z\|>1.96$	$\|Z\|>1.645$
$\mu>\mu_{0}$	$\mathrm{Z}>2.33$	$\mathrm{Z}>1.645$	$\mathrm{Z}>1.28$
$\mu<\mu_{0}$	$\mathrm{Z}<-2.33$	$\mathrm{Z}<-1.645$	$\mathrm{Z}<-1.28$

NOTE: Confidence limits for the mean of the population corresponding to the given sample.

$$
\begin{aligned}
& \mu=\bar{X} \pm Z \propto / 2(\text { S.E of } \bar{X}) \text { i.e, } \\
& \mu=\bar{X} \pm Z \propto / 2\left(\frac{\sigma}{\sqrt{\pi}}\right) \text { (or) } \mu=\bar{X} \pm Z \propto / 2\left(\frac{s}{\sqrt{\pi}}\right)
\end{aligned}
$$

2. Test of Significance for Difference of Means of two Large Samples

Let $\bar{x} \overline{1} \& \bar{x}^{-} \overline{2}$ be the means of the samples of two ramdom sizes m1\&m2 drawn from two populations having means $\mu_{1} \& \mu_{2}$ and SD's $\sigma_{1} \& \sigma_{2}$
i) Null hyopothesis: $H_{0}: \mu_{1}=\mu_{2}$
ii) Alternative hypothesis :: a) $\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$ (Two Tailed)
b) $H_{1}: \mu_{1}<\mu_{2}$ (Left one tailed)
c) $\mathrm{H}_{1}: \mu_{1}>\mu_{2}$ (Right one tailed)
iii) Level of Significance: Set the LOS α

Where $\delta=\mu_{1}-\mu_{2}$ (where given constant)

$$
\begin{aligned}
& \text { Other wise } \delta=\mu_{1}-\mu_{2}=0
\end{aligned}
$$

Critical value of Z from normal table at the LOS α
iv) Decision: If $\left|Z_{\text {cal }}\right|<Z_{\text {tab }}$, accept H_{0} otherwise reject H_{0}

NOTE: Confidence limits for difference of means

$$
\begin{aligned}
\mu_{1}-\mu_{2} & \left.=\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm z \propto / 2\left[\text { S. } \frac{E \text { of }\left(\bar{X}_{1}\right.}{1}-\bar{X}_{2}\right)\right] \\
& =\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm z_{\alpha / 2}\left[\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{1}}}\right]
\end{aligned}
$$

3. Test of Significance for Single Proportions

Suppose a random sample of size n has a sample proportion p of members possessing a certain attribute (proportion of successes). To test the hypothesis that the proportion P in the population has a specified value P_{0}.
i) Null hyopothesis: $H_{0}: P=P_{0}$
ii) Alternative hypothesis: a) $\mathrm{H}_{1}: \mathrm{P} \neq P_{0}$ (Two Tailed test)
b) $\mathrm{H}_{1}: P<P_{0}$ (Left one- tailed)
c) $\mathrm{H}_{1}: \mathrm{P}>P_{0} \quad$ (Right one tailed)
iii) Test statistic $: Z_{\text {cal }}=\frac{\mathrm{p}-\mathrm{P}}{\sqrt{\frac{\overline{\mathrm{PQ}}}{\mathrm{n}}}}$ when P is the Population proportion $Q=1-P$
iv) At specified $\operatorname{LOS} \propto$, critical value of Z
v) Decision: If $\left|z_{\text {cal }}\right|<Z_{\text {tab }}$, accept H_{0} otherwise reject H_{0}

NOTE : Confidence limits for population proportion $P=P \pm Z \underset{\alpha}{\alpha}(S E$ of $P)$

$$
=P \pm \mathrm{Z}_{\frac{\alpha}{2}}\left(\sqrt{\frac{\mathrm{pq}}{\mathrm{n}}}\right)
$$

4. Test for Equality of Two Proportions (Populations)

Let p_{1} and p_{2} be the sample proportions in two large random samples of sizes $n_{1 \&} n_{2}$ drawn from two populations having proportions $\mathrm{P}_{1} \& \mathrm{P}_{2}$
i) Null hyopothesis: $H_{0}: P_{1}=P_{2}$
ii) Alternative hypothesis :a) $\mathrm{H}_{1}: P_{1} \neq P_{2}$ (Two Tailed)
b) $\mathrm{H}_{1}: P_{1}<P_{2}$ (Left one tailed)
c) $\mathrm{H}_{1}: P_{1}>P_{2}$ (Right one tailed)

If given only sample proportions then

OR

$$
\mathrm{Z}_{\mathrm{cal}}=\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\sqrt{\left.\mathrm{pq}_{(}^{1}+\frac{1}{\mathrm{n}_{1}+\frac{1}{n_{2}}}\right)}} \text { Where } \mathrm{p}=\frac{\mathrm{n}_{1} 1+\mathrm{n} 2 \mathrm{p} 2}{\mathrm{n}_{1}+\mathrm{n}_{2}}=\frac{\mathrm{x} 1+\mathrm{x} 2}{\mathrm{n}_{1}+\mathrm{n}_{2}} \text { and } \mathrm{q}=1-\mathrm{p}
$$

iv) At specified LOS \propto critical value of ' Z '
v) Decision: If $\left|Z_{\text {cal }}\right|<Z_{\text {Tab }}$, accept H_{0} otherwise reject H_{0}

NOTE: Confidence limits for difference of population proportions

$$
P_{1}-P_{2}=\left(p_{1}-p_{2}\right) \pm Z_{\frac{\alpha}{2}}\left(S . E \text { of } P_{1}-P_{2}\right)
$$

Problems:

1. A sample of 64 students have a mean weight of 70 kgs . Can this be regarded as asample mean from a population with mean weight 56 kgs and standard deviation 25 kgs.

Sol:Given $x^{-}=$mean of he sample $=70 \mathrm{kgs}$
$\mu=$ Mean of the population $=56 \mathrm{kgs}$
$\sigma=$ S.D of population $=25 \mathrm{kgs}$
and $n=$ Sample size $=64$
i) Null Hypothesis H_{0} : A Sample of 64 students with mean weight 70 kgs be regarded as a sample from a population with mean weight 56 kgs and standard deviation 25 kgs . i.e., $H_{0}: \mu=70 \mathrm{kgs}$
ii) Alternative Hypothesis H_{1} : Sample cannot be regarded as one coming from the population. i.e., $H_{1}: \mu \neq 70 \mathrm{kgs}$ (Two-tailed test)
iii) Level of significance : $\alpha=0.05\left(Z_{\alpha}=1.96\right)$
iv) Test Statistic : $Z_{\text {cal }}=\frac{x^{-}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{70-56}{\frac{25}{\sqrt{64}}}=4.48$
v) Conclusion: Since $\left|Z_{\text {cal }}\right|$ value $>Z_{\alpha}$ value, we reject H_{0}
\therefore Sample cannot be regarded as one coming from the population
2. In a random sample of 60 workers , the average time taken by them to get to work is 33.8 minutes with a standard deviation of 6.1 minutes. Can we reject the null hypothesis $\mu=32.6$ in favor of alternative null hypothesis $\mu>32.6$ at $\alpha=0.05$ LOS
Sol : Given $\mathrm{n}=60, x^{-}=33.8, \mu=32.6$ and $\sigma=6.1$
i) Null Hypothesis $H_{0}: \mu=32.6$
ii) Alternative Hypothesis $H_{1}: \mu>32.6$ (Right one tailed test)
iii) Level of significance $: \alpha=0.01 \quad\left(Z_{\alpha}=2.33\right)$
iv) Test Statistic : $Z_{\text {cal }}=\frac{\mathrm{x}^{-}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{33.8-32.6}{\frac{6.1}{\sqrt{60}}}=\frac{1.2}{0.7875}=1.5238$
v) Conclusion: Since $Z_{\text {cal }}$ value $<Z_{\alpha}$ value, we accept H_{0}
3. A sample of 400 items is taken from a population whose standard deviation is $\mathbf{1 0}$. The mean of the sample is 40 . Test whether the sample has come from a population with mean 38 . Also calculate 95% confidence limits for the population .
Sol : Given $\mathrm{n}=400, x^{-}=40, \mu=38$ and $\sigma=10$
i) Null Hypothesis $H_{0}: \mu=38$
ii) Alternative Hypothesis $H_{1}: \mu \neq 38$ (Two -tailed test)
iii) Level of significance : $\alpha=0.05\left(Z_{\alpha}=1.96\right)$
iv) Test Statistic : $Z_{\text {ca }}=\frac{x^{-}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{38-4}{\frac{10}{\sqrt{400}}}=\frac{-2}{0.5}=-4$
v) \quad Conclusion: Since $\left|Z_{\text {cal }}\right| v_{-}$lue $>Z_{\alpha}$ value , we reject H_{0}
i.e., the sample is not from the population whose is 38 .
$\therefore 95 \%$ confidence interval is $\left(x^{-}-1.96 \cdot \frac{\sigma}{\sqrt{n}}, x^{-}+1.96 \frac{\sigma}{\sqrt{n}}\right)$
i.e., $\left(40-\frac{1.96(10)}{\sqrt{400}}, 40+\frac{1.96(10)}{\sqrt{400}}\right)$
$=\left(40-\frac{1.96(10)}{20}, 40+\frac{1.96(10)}{20}\right)$
$=(40-0.98,40+0.98)$
$=(39.02,40.98)$
4. An insurance agent has claimed that the average age of policy holders who issue through him is less than the average for all agents which is $\mathbf{3 0 . 5}$. A random sample of 100 policy holders who had issued through him gave the following age distribution .

Age	$16-20$	$21-25$	$26-30$	$31-35$	$36-40$
No\# of persons	12	22	20	30	16

Calculate the arithmetic mean and standard deviation of this distribution and use these values to test his claim at 5% los.

Sol : Take A $=28$ where $A-$ Assumed mean
$d_{\mathrm{i}}=x_{\mathrm{i}}-\mathrm{A}$
$\bar{x}=\mathrm{A}+\frac{\mathrm{h} \sum \mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}}{\mathrm{N}}$
$=28+\frac{5 \times 16}{100}=28.8$

$$
\text { S.D }: S=h \frac{\sqrt{\sum \mathrm{fd}^{2}}}{\mathrm{~N}}-\left(\frac{\sum \mathrm{fd}}{\mathrm{~N}}\right)^{2}=5 . \sqrt{\frac{164}{100}-\left(\frac{16}{100}\right)^{2}}=6.35
$$

i) Null Hypothesis H_{0} : The sample is drawn from population with mean μ
ii) i.e., $H_{0}: \mu=30.5$ years
iii) Alternative Hypothesis $H_{1}: \mu<30.5$ (Left one -tailed test)
iv) Level of significance : $\alpha=0.05\left(Z_{\alpha}=1.645\right)$
v) Test Statistic : $Z_{\text {cal }}=\frac{\mathrm{x}^{-}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{28.8-3.5}{\frac{6.35}{\sqrt{100}}}=-2.677$
vi) Conclusion: Since $\left|Z_{\text {cal }}\right|$ value $>Z_{\alpha}$ value, we reject H_{0} i.e., the sample is not drawn from the population with $\mu=30.5$ years.
5. An ambulance service claims that it takes on the average less than 10 minutes to reach its destination in emergency calls . A sample of $\mathbf{3 6}$ calls has a mean of 11 minutes and the variance of $\mathbf{1 6}$ minutes. Test the claim at 0.05 los?
Sol : Given $\mathrm{n}=36, x^{-}=11, \mu=10$ and $\sigma=\sqrt{16}=4$
i) Null Hypothesis $H_{0}: \mu=10$
ii) Alternative Hypothesis $H_{1}: \mu<10$ (Left one-tailed test)
iii) Level of significance : $\alpha=0.05\left(Z_{\alpha}=1.645\right)$
iv) Test Statistic: $Z_{\text {cal }}=\frac{x^{2}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{11-10}{\frac{4}{\sqrt{36}}}=\frac{6}{4}=1.5$
v) Conclusion: Since $\left|Z_{\text {cal }}\right|$ value $<Z_{\alpha}$ value, we accept H_{0}
6. The means of two large samples of sizes 1000 and 2000 members are $\mathbf{6 7 . 5}$ inches and 68 inches respectively. Can the samples be regarded as drawn from the same population of S.D 2.5 inches.
Sol: Let μ_{1} and μ_{2} be the means of the two populations
Given $n_{1}=1000, n_{2}=2000$ and $x^{-1}=67.5$ inches, $x^{-}{ }_{2}=68$ inches Population S.D, $\sigma=2.5$ inches
i) Null Hypothesis H_{0} :The samples have been drawn from the same population of S.D 2.5 inches
i.e., $H_{0}: \mu_{1}=\mu_{2}$
ii) Alternative Hypothesis $H_{1}: \mu_{1} \neq \mu_{2}$ (Two - Tailed test)
iii) Level of significance : $\alpha=0.05 \quad\left(Z_{\alpha}=1.96\right)$

v) Conclusion: Since $\left|Z_{\text {cal }}\right|$ value $>Z_{\alpha}$ value, we reject H_{0}

Hence, we conclude that the samples are not drawn from the same population of S.D 2.5 inches.
7. Samples of students were drawn from two universities and from their weights in kilograms, mean and standard deviations are calculated and shown below. Make a large sample test to test the significance of the difference between the means.

	Mean	S .D	Size of the sample
University A	55	10	400
University B	57	15	100

Sol: Let μ_{1} and μ_{2} be the means of the two populations
Given $n_{1}=400, n_{2}=100$ and $x^{-}{ }_{1}=55 \mathrm{kgs}, x^{-}=57 \mathrm{kgs}$
$\sigma_{1}=10$ and $\sigma_{2}=15$
i) Null Hypothesis $H_{0}: \mu_{1}=\mu_{2}$
ii) Alternative Hypothesis $H_{1}: \mu_{1} \neq \mu_{2}$ (Two - Tailed test)
iii) Level of significance $: \alpha=0.05 \quad\left(Z_{\alpha}=1.96\right)$

v) Conclusion: Since $\left|Z_{\text {cal }}\right|$ value $<Z_{\alpha}$ value, we accept H_{0}

Hence, we conclude that there is no significant difference between the means
8. The average marks scored by 32 boys is 72 with a S.D of 8 . While that for 36 girls is 70 with a S.D of 6 . Does this data indicate that the boys perform better than girls at 5\% los?
Sol: Let μ_{1} and μ_{2} be the means of the two populations
Given $n_{1}=32, n_{2}=36$ and $x^{-}{ }_{1}=72, x^{-}{ }_{2}=70$
$\sigma_{1}=8$ and $\sigma_{2}=6$
i) Null Hypothesis $H_{0}: \mu_{1}=\mu_{2}$
ii) Alternative Hypothesis $H_{1}: \mu_{1}>\mu_{2}$ (Right One Tailed test)
iii) Level of significance $: \alpha=0.05\left(Z_{\alpha}=1.645\right)$

v) Conclusion: Since $\left|Z_{\text {cal }}\right|$ value $<Z_{\alpha}$ value, we accept H_{0}

Hence, we conclude that the performance of boys and girls is the same
9. A sample of the height of 6400 Englishmen has a mean of 67.85 inches and a S.D of 2.56 inches while another sample of heights of 1600 Austrians has a mean of 68.55 inches and S.D of 2.52 inches. Do the data indicate that Austrians are on the average taller than the Englishmen? (Use α as 0.01)
Sol : Let μ_{1} and μ_{2} be the means of the two populations
Given $n_{1}=6400, n_{2}=1600$ and $x^{-}{ }_{1}=67.85, x^{-}{ }_{2}=68.55$
$\sigma_{1}=2.56$ and $\sigma_{2}=2.52$
i) Null Hypothesis $H_{0}: \mu_{1}=\mu_{2}$
ii) Alternative Hypothesis $H_{1}: \mu_{1}<\mu_{2}$ (Left One Tailed test)
iii) Level of significance $: \alpha=0.01 \quad\left(Z_{\alpha}=-2.33\right)$

$$
=\frac{67.85-68.55}{\sqrt{\frac{6.5536}{6400}+\frac{6.35}{1600}}}
$$

$$
=\frac{-0.7}{\sqrt{0.001+0.004}}=\frac{-0.7}{0.0707}-9.9
$$

v) Conclusion: Since $\mid \mathrm{Z}$ cal \mid value $>\mathrm{Z}_{\text {avalue }}$, we reject H_{0}

Hence, we conclude that Australians are taller than Englishmen.
10. At a certain large university a sociologist speculates that male students spend considerably more money on junk food than female students. To test her hypothesis the sociologist randomly selects from records the names of 200 students. Of thee , 125 are men and 75 are women. The mean of the average amount spent on junk food per week by the men is Rs. 400 and S.D is 100 . For the women the sample mean is Rs. 450 and S.D is 150 . Test the hypothesis at 5% los?
Sol: Let μ_{1} and μ_{2} be the means of the two populations

Given $n_{1}=125, n_{2}=75$ and $x^{-}{ }_{1}=$ Mean of men $=400, x^{-}{ }_{2}=$ Mean of women $=450$ $\sigma_{1}=100$ and $\sigma_{2}=150$
i) Null Hypothesis $H_{0}: \mu_{1}=\mu_{2}$
ii) Alternative Hypothesis $H_{1}: \mu_{1}>\mu_{2}($ Right One Tailed test)
iii) Level of significance : $\alpha=0.05 \quad\left(Z_{\alpha}=1.645\right)$

$$
=\frac{-30}{\sqrt{80+300}}
$$

$=\frac{-50}{\sqrt{380}}=\frac{-50}{19.49}=-2.5654$
v) Conclusion: Since $\mathrm{Z}_{\text {calvalue }}<\mathrm{Z}_{\text {avalue }}$, we accept H_{0}

Hence, we conclude that difference between the means are equal
11. The research investigator is interested in studying whether there is a significant difference in the salaries of MBA grads in two cities. A random sample of size 100 from city A yields an average income of Rs. 20,150 . Another random sample of size 60 from city B yields an average income of Rs. 20,250 . If the variance are given as $\sigma_{1}{ }^{2}=40,000$ and $\sigma_{2}{ }^{2}=\mathbf{3 2 , 4 0 0}$ respectively . Test the equality of means and also construct $\mathbf{9 5 \%}$ confidence limits.
Sol: Let μ_{1} and μ_{2} be the means of the two populations
Given $n_{1}=100, n_{2}=60$ and ${x^{-}}_{1}=$ Mean of city A $=20,150, x^{-}{ }_{2}=$ Mean of city $\mathrm{B}=20,250$ $\sigma_{1}{ }^{2}=40,000$ and $\sigma_{2}{ }^{2}=32,400$
i) Null Hypothesis $H_{0}: \mu_{1}=\mu_{2}$
ii) Alternative Hypothesis $H_{1}: \mu_{1} \neq \mu_{2}$ (Two -Tailed test)
iii) Level of significance : $\alpha=0.05\left(Z_{\alpha}=1.96\right)$

$=\frac{100}{\sqrt{400+540}}$

$$
=\frac{100}{30.66}=3.26
$$

v) Conclusion: Since $Z_{\text {calvalue }}>Z_{a}$ value, we reject H_{0}

Hence, we conclude that there is a significant difference in the salaries of MBA grades two cities.
$\therefore 95 \%$ confidence interval is $\mu-\underset{1}{\mu} \underset{1}{\mu}=\left(\bar{x}_{1}^{--}-\bar{x}\right) \pm 1.96 \sqrt{\frac{\sigma_{1}{ }^{2}}{\mathrm{n}_{1}}+\frac{\sigma_{2}{ }^{2}}{\mathrm{n}_{2}}}$
$=(20,150-20,250)) \pm 1.96 \sqrt{\frac{40000}{100}+\frac{32400}{60}}=(39.90,160.09)$
12. A die was thrown 9000 times and of these 3220 yielded a 3 or 4 . Is this consistent with the hypothesis that the die was unbiased?
Sol : Given $\mathrm{n}=9000$
$\mathrm{P}=$ Population of proportion of successes
$=\mathrm{P}($ getting a 3 or 4$)=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3} 0.3333$
$\mathrm{Q}=1-\mathrm{P}=0.6667$
$\mathrm{P}=$ Proportion of successes of getting 3 or 4 in 9000 times $\frac{-3220}{9000}=0.3578$
i) Null Hypothesis H_{0} : The die is unbiased
i.e., $H_{0}: P=0.33$
ii) Alternative Hypothesis H_{1} : The die is biased i.e., $H_{1}: \mathrm{P} \neq 0.33$ (Two -Tailed test)
iii) Level of Significance : $\alpha=0.05\left(Z_{\alpha}=1.96\right)$

v)Conclusion: Since $Z_{\text {calvalue }}>Z_{a}$ value, we reject H_{0}

Hence, we conclude that the die is biased.
13. In a random sample of 125 cool drinkers, 68 said they prefer thumsup to Pepsi . Test the null hypothesis $\mathbf{P}=0.5$ against the alternative hypothesis hypothesis $\mathbf{P}>\mathbf{0 . 5}$?
Sol : Given $\mathrm{n}=125, \mathrm{x}=68$ and $\mathrm{p}=\frac{\mathrm{x}}{\mathrm{n}}=\frac{68}{125}=0.544$
i) Null Hypothesis $H_{0}: \mathrm{P}=0.5$
ii) Alternative Hypothesis $H_{1}: \mathrm{P}>0.5$ (Right One Tailed test)
iii) Level of Significance : $\alpha=0.05 \quad\left(Z_{\alpha}=1.645\right)$
iv) Test Statistic $: Z_{\text {cal }}=\frac{\mathrm{p}-\mathrm{P}}{\sqrt{\frac{\mathrm{PQ}}{\mathrm{n}}}}=\frac{0.544-0.5}{\sqrt{\frac{\sqrt{0.5}(0.5)}{105}}}=0.9839$
v) Conclusion: Since $\mathrm{Z}_{\text {calvalue }}<\mathrm{Z}_{\mathrm{a}}$ value, we accept H_{0}
14. A manufacturer claimed that at least 95% of the equipment which he supplied to a factory conformed to specifications. An experiment of a sample of 200 piece of equipment revealed that 18 were faulty. Test the claim at 5% los ?

Sol : Given $\mathrm{n}=200$
Number of pieces confirming to specifications $=200-18=182$
$\therefore \mathrm{p}=$ Proportion of pieces confirming to specification $=\frac{182}{200}=0.91$
$\mathrm{P}=$ Population proportion $=\frac{95}{100}=0.95$
i) Null Hypothesis $H_{0}: \mathrm{P}=0.95$
ii) Alternative Hypothesis $H_{1}: \mathrm{P}<0.95$ (Left One Tailed test)
iii) Level of Significance : $\alpha=0.05 \quad\left(Z_{\alpha}=-1.645\right)$
iv) Test Statistic : $Z_{\text {cal }}=\frac{\frac{\mathrm{p}-\mathrm{P}}{\sqrt{\frac{\mathrm{PQ}}{\mathrm{n}}}}}{=\frac{0.91-0.95}{\sqrt{\frac{0.95 \times 0.05}{200}}}=-2.59, ~}$
v) Conclusion: We reject H_{0}

Hence, we conclude that the manufacturer's claim is rejected.
15. Among 900 people in a state 90 are found to be chapati eaters. Construct $\mathbf{9 9 \%}$ confidence interval for the true proportion and also test the hypothesis for single proportion?
Sol: Given $\mathrm{x}=90, \mathrm{n}=900$
$\therefore \mathrm{p}=\frac{\mathrm{x}}{\mathrm{n}}=\frac{90}{100}=\frac{1}{10}=0.1$
And q $=1$ - $\mathrm{p}=0.9$
Now $\sqrt{\frac{\overline{p q}}{\mathrm{n}}}=\sqrt{\frac{(0.1)(0.9)}{900}}=0.01$
Confidence interval is $P=p \pm Z_{2}\left(\sqrt{ } \sqrt{n}_{n}\right)$
i.e., $(0.1-0.03,0.1+0.03)$
$=(0.07,0.13)$
i) Null Hypothesis $H_{0}: \mathrm{P}=0.5$
ii) Alternative Hypothesis $H_{1}: \mathrm{P} \neq 0.5$ (Two Tailed test)
iii) Level of Significance : $\alpha=0.01 \quad\left(Z_{\alpha}=2.58\right)$
iv) Test Statistic $: Z_{\text {cal }}=\frac{\mathrm{p}-\mathrm{P}}{\sqrt{\frac{\overline{\mathrm{PO}}}{\mathrm{n}}}}=\frac{0.1-0.5}{\sqrt{\frac{0.5 \times 0.5}{900}}}=-24.39$
v) Conclusion: Since $\left|Z_{\text {cal }}\right|$ value $>Z_{\alpha}$ value, we reject H_{0}
16. Random samples of 400 men and 200 women in a locality were asked whether they would like to have a bus stop a bus stop near their residence. 200 men and 40 women in favor of the proposal. Test the significance between the difference of two proportions at 5\% los?

Sol: Let P_{1} and P_{2} be the population proportions in a locality who favor the bus stop
Given $n_{1}=$ Number of men $=400$
$n_{2}=$ number of women $=200$
$x_{1}=$ Number of men in favor of the bus stop $=200$
$x_{2}=$ Number of women in favor of the bus stop 40
$\therefore p_{1}=\frac{\mathrm{x}_{1}}{\mathrm{n}_{1}}=\frac{200}{400}=\frac{1}{2}$ and $p_{2}=\frac{\mathrm{x}_{2}}{\mathrm{n}_{2}}=\frac{40}{200}=\frac{1}{5}$
i) Null Hypothesis $H_{0}: P_{1}=P_{2}$
ii) Alternative Hypothesis $H_{1}: P_{1} \neq P_{2}$ (Two Tailed test)
iii) Level of Significance : $\alpha=0.05 \quad\left(Z_{\alpha}=1.96\right)$
iv) Test Statistic Z

$$
Z_{\mathrm{cal}}=\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\sqrt{\left.\mathrm{pqq}_{(1-1}^{\mathrm{m}_{1}}+\frac{1}{\mathrm{n}_{2}}\right)}}
$$

We have $\mathrm{p}=\frac{\mathrm{n}_{1} \mathrm{p}_{1}+\mathrm{n}_{2} \mathrm{p}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{n_{1}+\mathrm{n}_{2}}=\frac{200+40}{400+200}=\frac{240}{600}=\frac{2}{5}$
$\mathrm{q}=1-\mathrm{p}=\frac{3}{5}$
$=\frac{0.5-0.2}{\sqrt{(0.4)(0.6)\left(\frac{1}{400}+\frac{1}{200}\right)}}=7.07$
v) Conclusion: Since $\left|Z_{\text {cal }}\right|$ value $>Z_{\text {a }}$ value, we reject H_{0}

Hence we conclude that there is difference between the men and women in their attitude towards the bus stop near their residence.
17. A machine puts out $\mathbf{1 6}$ imperfect articles in a sample of 500 articles. After the machine is overhauled it puts out $\mathbf{3}$ imperfect articles in a sample of $\mathbf{1 0 0}$ articles. Has the machine is improved?

Sol : Let P_{1} and P_{2} be the proportions of imperfect articles in the proportion of articles manufactured by the machine before and after overhauling, respectively.

Given $n_{1}=$ Sample size before the machine overhauling $=500$
$n_{2}=$ Sample size after the machine overhauling $=100$
$x_{1}=$ Number of imperfect articles before overhauling $=16$
$x_{2}=$ Number of imperfect articles after overhauling $=3$
$\therefore p_{1}=\frac{\mathrm{x}_{1}}{\mathrm{n}_{1}}=\frac{16}{500}=0.032 \mathrm{am} \quad 2=\frac{\mathrm{x}_{2}}{\mathrm{n}_{2}}=\frac{3}{100}=0.03$
i) Null Hypothesis $H_{0}: P_{1}=P_{2}$
ii) Alternative Hypothesis $H_{1}: P_{1}>P_{2}$ (Left one Tailed test)
iii) Level of Significance : $\alpha=0.05\left(Z_{\alpha}=1.645\right)$
iv) Test Statistic $Z_{\text {cal }}=\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\sqrt{\mathrm{pqq}\left(\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}\right)}}$

We have $p=\frac{n_{1} \underline{1}_{1}+n_{2} \underline{p_{2}} \underline{2}}{n_{1}+n_{2}}=\frac{\underline{x}_{1}+x_{2}}{n_{1}+n_{2}}=\frac{16+3}{500+100}=\frac{19}{600}=0.032$
$\mathrm{q}=1-\mathrm{p}=0.968$
$=\frac{0.032-0.03}{\sqrt{\left.(0.032)(0.968) \frac{1}{500}+\frac{1}{100}\right)}}$
$\frac{0.002}{0.019}=0.104$
v) Conclusion: Since $\left|Z_{\text {cal }}\right|$ value $<Z_{a}$ value, we accept H_{0}

Hence we conclude that the machine has improved.
18. In an investigation on the machine performance the following results are obtained .

	No\# of units inspected	No\# of defectives
Machine 1	375	17
Machine 2	450	22

Test whether there is any significant performance of two machines at $\alpha=\mathbf{0 . 0 5}$
Sol: Let P_{1} and P_{2} be the proportions of defective units in the population of units inspected in machine 1 and Machine 2 respectively.

Given $n_{1}=$ Sample size of the Machine $1=375$
$n_{2}=$ Sample size of the Machine $2=450$
$x_{1}=$ Number of defectives of the Machine $1=17$
$x_{2}=$ Number of defectives of the Machine $2=22$
$\therefore p_{1}=\frac{\mathrm{x}_{1}}{\mathrm{n}_{1}}=\frac{17}{375}=0.045 \mathrm{am}{ }_{2}=\frac{\mathrm{x}_{2}}{\mathrm{n}_{2}}=\frac{22}{450}=0.049$
i) Null Hypothesis $H_{0}: P_{1}=P_{2}$
ii) Alternative Hypothesis $H_{1}: P_{1} \neq P_{2}$ (Two Tailed test)
iii) Level of Significance : $\alpha=0.05\left(Z_{\alpha}=1.96\right)$
iv) Test Statistic Z

$$
{ }_{\mathrm{cal}}=\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\sqrt{\mathrm{pqq}\left(\frac{1}{n_{1}}+\frac{1}{\mathrm{~m}_{2}}\right)}}
$$

We have $\mathrm{p}=\frac{\mathrm{n}_{1} \underline{p}_{1}+\mathrm{n}_{2} \underline{p}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}=\frac{17+22}{375+450}=\frac{39}{825}=0.047$
$\mathrm{q}=1-\mathrm{p}=1-0.047=0.953$
$=\frac{0.045-0.049}{\sqrt{(0.047)(0.953) \frac{1}{375}+\frac{1}{450}}}$
$=-0.267$
v) Conclusion: Since $\left|Z_{\text {cal }}\right|$ value $<Z_{a}$ value, we accept H_{0}

Hence we conclude that there is no significant difference in performance of machines.
19. A cigarette manufacturing firm claims that its brand A line of cigarettes outsells its brand B by 8%. If it is found that $\mathbf{4 2}$ out of $\mathbf{2 0 0}$ smokers prefer brand A and 18 out of another sample of $\mathbf{1 0 0}$ smokers prefer brand B. Test whether $\mathbf{8 \%}$ difference is a valid claim?
Sol: Given $n_{1}=200$
$n_{2}=100$
$x_{1}=$ Number of smokers preferring brand $\mathrm{A}=42$
$x_{2}=$ Number of smokers preferring brand $\mathrm{B}=18$
$\therefore p_{1}=\frac{\mathrm{x}_{1}}{\mathrm{n}_{1}}=\frac{42}{200}=0.21 \mathrm{ax} \phi \quad \frac{\mathrm{x}_{2}}{\mathrm{n}_{2}}=\frac{18}{100}=0.18$
and $P_{1}-P_{2}=8 \%=0.08$
i) Null Hypothesis $H_{0}: P_{1}-P_{2}=0.08$
ii) Alternative Hypothesis $H_{1}: P_{1}-P_{2} \neq 0.08$ (Two Tailed test)
iii) Level of Significance : $\alpha=0.05\left(Z_{\alpha}=1.96\right)$
iv) Test Statistic $Z_{\text {cal }}=\frac{\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)-\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)}{\sqrt{\mathrm{pq}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$

We have $\mathrm{p}=\frac{\underline{n_{1}} \underline{p_{1}}+\underline{n} \underline{n_{2}} \underline{2} \underline{2}}{n_{1}+n_{2}}=\frac{\underline{x}_{1}+x_{2} \underline{2}}{n_{1}+n_{2}}=\frac{42+1}{200+100}=\frac{60}{300}=0.2$
$\mathrm{q}=1-\mathrm{p}=1-0.2=0.8$
$Z_{\text {cal }}=\frac{(0.21-0.18)-0.08}{\sqrt{(0.2)(0.8)\left(\frac{1}{200}+\frac{1}{100}\right)}}$
$=\frac{-0.05}{0.0489}=-1.02$
v) Conclusion: Since $\left|Z_{\text {cal }}\right|$ value $<Z_{\alpha}$ value, we accept H_{0}

Hence we conclude that 8% difference in the sale of two brands of cigarettes is a valid claim.
20. In a city $A, \mathbf{2 0 \%}$ of a random sample of 900 schoolboys has a certain slight physical defect . In another city $B, \mathbf{1 8 . 5 \%}$ of a random sample of 1600 school boys has the same defect . Is the difference between the proportions significant at 5\% los?
Sol: Given $n_{1}=900$
$n_{2}=1600$
$x_{1}=20 \%$ of $900=180$
$x_{2}=18.5 \%$ 甲f0 $1600=296$
$\therefore p_{1}=\frac{\mathrm{x} 1}{\mathrm{n}_{1}}=\frac{100}{900}=0.2 \mathrm{axp} \quad 2=\frac{\mathrm{x}_{2}}{\mathrm{n}_{2}}=\frac{296}{1600}=0.185$
i) Null Hypothesis $H_{0}: P_{1}=P_{2}$
ii) Alternative Hypothesis $H_{1}: P_{1} \neq P_{2}$ (Two Tailed test)
iii) Level of Significance : $\alpha=0.05\left(Z_{\alpha}=1.96\right)$
iv) Test Statistic $Z_{\text {cal }}=\frac{\left(\mathrm{p}_{1}-\mathrm{p}_{2} L\right.}{\sqrt{\mathrm{pqq}\left(\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}\right)}}$

We have $\mathrm{p}=\frac{\underline{n}_{1} \underline{p}_{1}+n_{2} \underline{p}_{2}}{n_{1}+n_{2}}=\frac{\underline{x}_{1}+\underline{x}_{2}}{n_{1}+n_{2}}=\frac{180+296}{900+1600}=\frac{476}{2500}=0.19$
$\mathrm{q}=1-\mathrm{p}=1-0.19=0.81$
$Z_{\text {cal }}=\frac{0.2-0.185}{\sqrt{\left.(0.19)(0.81) \frac{1}{900}+\frac{1}{1600}\right)}}$
$=\frac{-0.015}{0.01634}=-0.918$
v) Conclusion: Since $\left|Z_{\text {cal }}\right|$ value $<Z_{\alpha}$ value, we accept H_{0}

Hence we conclude that there is no significant difference between the proportions.
21. The mean life time of a sample of 100 light tubes produced by a company is found to be 1560 hrs with a population S.D of 90 hrs . Test the hypothesis for $\boldsymbol{\alpha}=0.05$ that the mean life time of the tubes produced by the company is 1580 hrs .
Sol. Given $x^{-}=1560 \mathrm{hrs}$
$\mu=1580 \mathrm{hrs}, \quad n=100$ and $\sigma=90 \mathrm{hrs}$
i) Null Hypothesis $H_{0}: H_{0}: \mu=1580$
ii) Alternative Hypothesis $H_{1}: \mu \neq 1580$ (Two -tailed test)
iii) Level of significance : $\alpha=0.05\left(Z_{\alpha}=1.96\right)$
iv) Test Statistic: $Z_{\text {cal }}=\frac{x^{-}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{1560-1580}{\frac{90}{\sqrt{100}}}=\frac{-20}{9}$
$\therefore|z|=\frac{20}{9}=2.22$
v) Conclusion: Since $\left|\mathrm{Z}_{\text {cal }}\right|$ value $>Z_{\alpha}$ value, we reject H_{0}
$\therefore \mu \neq 1580$
22. Test the significance of the difference between the means of the samples from the following data

Sample A Sample B

Size of Sample	100	150
Mean	50	51
Standard Deviation	4	5

(Table value $=1.96$)
Sol.Let μ_{1} and μ_{2} be the means of the two populations
Given $n_{1}=100, n_{2}=150$ and $x^{-}{ }_{1}=50, x^{-}{ }_{2}=51$
$\sigma_{1}=4$ and $\sigma_{2}=5$
i) Null Hypothesis $H_{0}: \mu_{1}=\mu_{2}$
ii) Alternative Hypothesis $H_{1}: \mu_{1} \neq \mu_{2}$ (Two - Tailed test)
iii) Level of significance : $\alpha=0.05\left(Z_{\alpha}=1.96\right)$

$$
\therefore\left|Z_{\text {cal }}\right|=3.0581
$$

v) Conclusion: Since $\left|Z_{\text {cal }}\right|$ value $>Z_{\alpha \text { value }}$, we reject H_{0}

Hence, we conclude that there is some significant difference between the means

TUTORIAL QUESTIONS

1) If the population is $3,6,9,15,27$
a) List all possible samples of size 3 that can be taken without replacement from finite population
b) Calculate the mean of each of the sampling distribution of means
c) Find the standard deviation of sampling distribution of means
2) A population consist of five numbers $2,3,6,8$ and 11 . Consider all possible samples of size two which can be drawn with replacement from this population .Find
a) The mean of the population
b) The standard deviation of the population
c) The mean of the sampling distribution of means and
d) The standard deviation of the sampling distribution of means
3) A random sample of size 100 is taken from a population with $\sigma=5.1$. Given that the sample mean is $x^{-}=21.6$ Construct a 95% confidence limits for the population mean .
4) A normal population has a mean of 0.1 and standard deviation of 2.1 . Find the probability that mean of a sample of size 900 will be negative .
5) A random sample of size 64 is taken from a normal population with $\mu=51.4$ and $\sigma=$ 6.8. What is the probability that the mean of the sample will
a) exceed 52.9
b) fall between 50.5 and 52.3
c) be less than 50.6 .
6) A random sample of 500 apples was taken from a large consignment and 60 were found to be bad. Obtain 95% confidence interval for the percentage number of bad apples in the consignment.
7) The average income of 100 people of a city is Rs 210 with a standard deviation of Rs 10 .For another sample of 150 people the average income is Rs 220 with a standard deviation of Rs12.Test the significant difference between two mean at 5\% LOS.
8) A coin is tossed 960 times. Head turned up 184 times. Find whether the coin is unbiased.
9) Random samples of 600 men and 900 women in a locality were asked they would like to have a bus stop near their residence .350 men and 475 women were in favor of the proposal. Test the significance between the difference of two proportions at 5% LOS.

ASSIGNMENT QUESTIONS

1. A manufacturer claimed that at least 95% of the equipment which he supplied to factory conformed to specifications. An examination of a sample of 200 pieces of equipment revealed that 180 were faulty. Test his claim at 5% and 1% LOS.
2. Write about i) critical region ii) one tailed and two tailed test.
3. Define sample. Explain the different methods that are involved in selecting the sample.
4. Explain about i) Type I error ii) Type II error
5. a)Explain the five step procedure for testing of hypothesis
b)Explain about i) point estimation ii) interval estimation
6. A random sample of 500 items has mean 20 and another sample of size 400 has mean 15. Can you conclude that the two samples are taken from the same population with SD as 4 .
7. A sample of 500 products are examined from a factory and 5% found to be defective. Another sample of 400 similar products are examined and 3% found to be defective. Test the significance between the difference of two proportions at 5% LOS.
8. 20 people were attacked by a disease and only 18 survived. will you reject the hypothesis that the survival rate of the attack by this disease is 85% in favor of the hypothesis that is more at 5\% LOS.

UNIT 5

CORRELATION AND REGRESSION

CORRELATION

Introduction

In a bivariate distribution and multivariate distribution, we may be interested to find if there is any relationship between the two variables under study. Correlation refers to the relationship between two or more variables. The correlation expresses the relationship or interdependence of two sets of variables upon each other.
Definition Correlation is a statistical tool which studies the relationship b/w 2 variables \& correlation analysis involves various methods \& techniques used for studying \& measuring the extent of the relationship b / w them.
Two variables are said to be correlated if the change in one variable results in a corresponding change in the other.

The Types of Correlation

1) Positive and Negative Correlation: If the values of the 2 variables deviate in the same direction
i.e., if the increase in the values of one variable results in a corresponding increase in the values of othervariable (or) if the decrease in the values of one variable results in a corresponding decrease in the values of other variable is called Positive Correlation.
e.g. Heights \& weights of the individuals If the increase (decrease) in the values of one variable results in a corresponding decrease (increase) in the values of other variable is called Negative Correlation.
e.g, Price and demand of a commodity.
2) Linear and Non-linear Correlation:The correlation betweentwo variables is said to be Linear if the corresponding to a unit change in one variable there is a constant change in the other variable over the entire range of the values (or) two variables x, yare said to be linearly related if there exists a relationship of the form $y=a+b x$.
e.g when the amount of output in a factory is doubled by doubling the number of workers. Two variables are said to be Non-linear or curvilinear if corresponding to a unit change in one variable the other variable doesnot change at a constant rate but at fluctuating rate. i.eCorrelation is said to be non-linear if the ratio of change is not constant. In other words, when all the points on the scatter diagram tend to lie near a smooth curve, the correlation is saidto be non-linear (curvilinear).
3) Partial and Total correlation: The study of two variables excluding some other variablesis called Partial Correlation.
e.g. We study price and demand eliminating the supply.

In Total correlation all the facts are taken into account.
e.g Price, demand \&supply , all are taken into account.
4) Simple and Multiple correlation:When we study only two variables, the relationship is described as Simple correlation.
E.g quantity of money and price level, demand and price.

The following are scatter diagrams of Correlation.

Karl Pearson's Coefficient of Correlation

Karl Pearson suggested a mathematical method for measuring the magnitude of linear relationship between 2 variables. This is known as Pearsonian Coefficient of correlation. It is denoted by ' r '. This method is also known as Product-Moment correlation coefficient

$$
\mathrm{r}=\underset{\sigma_{\mathrm{x}} \sigma_{\mathrm{y}}}{\operatorname{Cov}(\mathrm{xy})}=\underset{N \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}}{\sum \mathrm{xy}}=\underset{\sqrt{\Sigma} \mathrm{x}^{2} \sum \mathrm{Y}^{2}}{\sum \mathrm{XY}}
$$

$\mathrm{X}=(\mathrm{x}-\overline{\mathrm{X}}), \mathrm{Y}=(\mathrm{y}-\overline{\mathrm{Y}})$ where, $\overline{\mathrm{X}}, \overline{\mathrm{Y}}$ are means of the series $x \& y$.
$\sigma_{\mathrm{x}}=$ standard deviation of series X

$$
\sigma_{y}=\text { standard deviation of series } y
$$

Properties

1. The Coefficient of correlation lies $\mathrm{b} / \mathrm{w}-1 \&+1$.
2. The Coefficient of correlationis independent of change of origin \& scale of measurements.
3. If X, Y are random variables and a, b, c, dare any numbers such that $a \neq 0, c \neq 0$ then

$$
\mathrm{r}(\mathrm{aX}+\mathrm{b}, \mathrm{cY}+\mathrm{d})=\underset{|\mathrm{ac\mid}|}{\mathrm{ac}} \mathrm{r}(\mathrm{X}, \mathrm{Y})
$$

4. Two independent variables are uncorrelated. That is if X and Y are independent variables then $r(X, Y)=0$

Rank Correlation Coefficient

Charles Edward Spearman found out the method of finding the Coefficient of correlation by ranks. This method is based on rank \& is useful in dealing with qualitative characteristics such as morality, character, intelligence and beauty. Rank correlation is applicable to only to the individual observations.
formula: $\rho=6 \frac{\sum \mathrm{D}^{2}}{\mathrm{~N}\left(\mathrm{~N}^{2}-1\right)}$
where : ρ - Rank Coefficient of correlation
D^{2} - Sum of the squares of the differences of two ranks
N - Number of paired observations.

Properties

1. The value ofplies between +1 and -1 .
2. If $\rho=1$, then there is complete agreement in the order of the ranks \& the direction of the rank is same.
3. If $\rho=-1$, then there is complete disagreement in the order of the ranks \& they are in opposite directions.

Equal or Repeated ranks

If any 2 or more items are with same value the in that case common ranks are given to repeated items. The common rank is the average of the ranks which these items would have assumed, if they were different from each other and the next item will get the rank next to ranks already assumed.
Formula: $\rho=1-6\left\{\frac{\sum^{D^{2}+\frac{1}{12}\left(m^{3}-m\right)+\frac{1}{12}\left(m^{3}-m\right) \ldots}}{N^{3}-N}\right\}$
where $m=$ the number of items whose ranks are common.
N -Number of paired observations.
D^{2} - Sum of the squares of the differences of two ranks

REGRESSION

In regression we can estimate value of one variable with the value of the other variable which is known. The statistical method which helps us to estimate the unknown value of one variable from the known value of the related variable is called 'Regression'. The line described in the average relationship b/w 2 variables is known as Line of Regression.

Regression Equation:

The standard form of the Regression equation is $\mathrm{Y}=\mathrm{a}+\mathrm{bX}$ where a, b are called constants. ' a ' indicates value of Y when $X=0$. It is called Y-intercept. ' b ' indicates the value of slope of the regression line \& gives a measure of change of y for a unit change in X. it is also called as regression coefficient of Y on X. The values of a, b are found with the help of following Normal Equations.
Normal Equations for Regression Equation of Y onX are
$\sum \mathrm{Y}=\mathrm{Na}+\mathrm{b} \sum \mathrm{X}$
$\sum \mathrm{XY}=\mathrm{a} \sum \mathrm{X}+\mathrm{b} \sum \mathrm{X}^{2}$
Normal Equations for Regression Equation of X on Yare
$\sum \mathrm{X}=\mathrm{Na}+\mathrm{b} \sum \mathrm{Y}$

$\sum \mathrm{XY}=\mathrm{a} \sum \mathrm{Y}+\mathrm{b} \sum \mathrm{Y}^{2}$

Regression equations when deviations taken from the arithmetic mean :
Regression equation of Y onX : $Y-\bar{Y}=b_{y x}(X-\bar{X})$ whereb $_{y x}=\frac{\sum X Y}{\sum \mathrm{x}^{2}}$
Regression equation of X on $Y: X-\bar{X}=b_{x y}(Y-\bar{Y})$ where $b_{x y}=\frac{\sum X Y}{\sum \mathrm{Y}^{2}}$
Angle b/w Two Regression lines $: \tan \theta=\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}$

1. If θ is acute then $\tan \theta=\frac{\sigma_{x} \sigma_{y}}{\sigma^{2}}\left(\underline{r^{2}}\right)$

2. If $r=0$ then $\tan \theta=\infty$ then $\theta={ }^{\pi}$. Thus if there is no relationship between the 2 variables(i.e, they are independent) then $\theta=\frac{\pi}{2}$.
3. If $r= \pm 1$ then $\tan \theta=0$ then $\theta=0$ or π. Hence the 2 regression lines are parallel or coincident. The correlation between 2 variables is perfect.

Problems

1. Find Karl Pearson's coefficient of correlation from the following data.

Ht. in inches	$\mathbf{5 7}$	$\mathbf{5 9}$	$\mathbf{6 2}$	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{5 5}$	$\mathbf{5 8}$	$\mathbf{5 7}$
Weight in lbs	$\mathbf{1 1 3}$	$\mathbf{1 1 7}$	$\mathbf{1 2 6}$	$\mathbf{1 2 6}$	$\mathbf{1 3 0}$	$\mathbf{1 2 9}$	$\mathbf{1 1 1}$	$\mathbf{1 1 6}$	$\mathbf{1 1 2}$

Sol:

| $\begin{array}{l}\text { Ht. } \\ \text { inches } \\ \text { X }\end{array}$ | $\begin{array}{l}\text { in }\end{array}$ | $\begin{array}{l}\text { Deviation } \\ \text { from mean } \\ \mathrm{X}=\mathrm{x}-\boldsymbol{x}^{-}\end{array}$ | X^{2} | $\begin{array}{l}\text { Wt. in lbs } \\ \mathrm{Y}\end{array}$ | $\begin{array}{l}\text { Deviation } \\ \text { from mean } \\ \mathrm{Y}=\mathrm{y}-\bar{y}\end{array}$ | Y^{2} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Product of

deviations

of X and Y

series (XY)\end{array}\right)\)

Coefficient of correlation $r=\frac{\sum \mathrm{XY}}{\sqrt{\sum \mathrm{X}^{2} \sum \mathrm{Y}^{2}}}=\frac{216}{\sqrt{(102)(471)}}=0.98$
2. Calculate Coefficient of correlation for the following data.

\mathbf{X}	12	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 1}$	13	7
\mathbf{Y}	$\mathbf{1 4}$	$\mathbf{8}$	6	$\mathbf{9}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{3}$

Sol: In both series items are in small number.
So there is no need to take deviations.

Formula used: $\mathrm{r}=\frac{\operatorname{Cov}(\mathrm{XY})}{\sigma_{x} \sigma_{y}}$						
X	Y	X^{2}	Y	YY		
12	14	144	196	168		
9	8	81	64	72		

8	6	64	36	48
10	9	100	81	90
11	11	121	121	121
13	3	169	144	156
7	$\boldsymbol{9}$	49	21	
$\boldsymbol{X}=70$	$\boldsymbol{Y}=63$	$\boldsymbol{\Sigma} \mathrm{X}^{2}=728$	$\boldsymbol{\Sigma} \mathrm{Y}^{2}=651$	$\boldsymbol{\Sigma} \mathrm{XY}=676$

$$
\mathrm{r}=\frac{\sum \mathrm{XY}-\left(\sum \mathrm{X} \sum \mathrm{Y}\right) / \mathrm{N}}{\sqrt{\left.\left(\sum \mathrm{X}^{2}\right)-\left(\sum \mathrm{X}\right)^{2} / \mathrm{N}\right)\left(\sum \mathrm{Y}^{2}-\left(\sum \mathrm{Y}\right)^{2}\right) / \mathrm{N}}}
$$

Here $\mathrm{N}=7$.

$$
r=\frac{4732-4410}{\sqrt{5096-4900} \sqrt{4557-3969}}=\frac{322}{\sqrt{(196)(588)}}=\frac{322}{339.48}=+0.95
$$

3. A sample of 12 fathers and their elder sons gave the following data about their elder sons. Calculate the rank correlation coefficient.

Fathers	$\mathbf{6 5}$	$\mathbf{6 3}$	$\mathbf{6 7}$	$\mathbf{6 4}$	$\mathbf{6 8}$	$\mathbf{6 2}$	$\mathbf{7 0}$	$\mathbf{6 6}$	$\mathbf{6 8}$	$\mathbf{6 7}$	$\mathbf{6 9}$	$\mathbf{7 1}$
Sons	$\mathbf{6 8}$	$\mathbf{6 6}$	$\mathbf{6 8}$	$\mathbf{6 5}$	$\mathbf{6 9}$	$\mathbf{6 6}$	$\mathbf{6 8}$	$\mathbf{6 5}$	$\mathbf{7 1}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{7 0}$

Sol:

Fathers(x)	Sons(y)	$\operatorname{Rank}(\mathrm{x})$	$\operatorname{Rank}(\mathrm{y})$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}$	$\mathrm{d}_{\mathrm{i}}^{2}$
65	68	9	5.5	3.5	12.25
63	66	11	9.5	1.5	2.25
67	68	6.5	5.5	1.0	1
64	65	10	11.5	-1.5	2.25
68	69	4.5	3	1.5	2.25
62	66	12	9.5	2.5	6.25
70	68	2	5.5	$=3.5$	12.25
66	65	8	11.5	3.5	12.25
68	71	4.5	1	-3.5	12.25
67	67	6.5	8	-1.5	2.25
69	68	3	5.5	-2.5	6.25
71	70	1	2	-1	1

Repeated values are given common rank, which is the mean of the ranks .In X: 68 \& 67 appear twice.
In Y :68 appears 4 times, 66 appears twice \&65 appears twice. Here $\mathrm{N}=12$.

$$
\rho=1-6\left\{\frac{\sum D^{2}+\frac{1}{12}\left(m^{3}-m\right)+\frac{1}{12}\left(m^{3}-m\right)}{N^{3}-N}\right\}=1-\frac{6(72.5+7)}{12\left(12^{2}-1\right)}=0.722
$$

4. Givenn $=10, \sigma_{x}=5.4, \sigma_{y}=6.2$ and sum of product of deviation from the mean of $X \& Y$ is 66 . Find the correlation coefficient.

Sol: $\mathrm{n}=10, \sigma_{\mathrm{x}}=5.4, \sigma_{\mathrm{y}}=6.2$

$$
\begin{array}{r}
\sigma_{x}^{2}=\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}} \\
\sigma_{\mathrm{y}}^{2}=\frac{\sum(\mathrm{y}-\overline{\mathrm{y}})^{2}}{\mathrm{n}} \\
\mathrm{r}=\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})(\mathrm{y}-\overline{\mathrm{y}})}{\sqrt{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2} \sum(\mathrm{y}-\overline{\mathrm{y}})^{2}}}=\frac{66}{(5 .)(6.2)}
\end{array}
$$

5. The heights of mothers \& daughters are given in the following table. From the $\mathbf{2}$ tables of regression estimate the expected average height of daughter when the height of the mother is 64.5 inches.

Ht. of Mother(inches)	$\mathbf{6 2}$	$\mathbf{6 3}$	$\mathbf{6 4}$	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 6}$	$\mathbf{6 8}$	$\mathbf{7 0}$
Ht. of the daughter(inches)	$\mathbf{6 4}$	$\mathbf{6 5}$	$\mathbf{6 1}$	$\mathbf{6 9}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{7 1}$	$\mathbf{6 5}$

Sol: Let $\mathrm{X}=$ heights of the mother and $\mathrm{Y}=$ heights of the daughter
Let $\mathrm{dx}=\mathrm{X}-65, \mathrm{dy}=\mathrm{Y}-67, \sum \mathrm{x}=522, \sum \mathrm{dx}=2, \sum \mathrm{dx}^{2}=50, \sum \mathrm{y}=530$,

$$
\begin{gathered}
\sum \mathrm{dy}=-6 \sum \mathrm{D}^{2}=74, \sum \mathrm{dxdy}=20 \\
\overline{\mathrm{X}}=\frac{\sum \mathrm{X}}{\mathrm{~N}}=\frac{522}{8}=66.25 \\
\bar{Y}=\frac{\sum \mathrm{Y}}{\mathrm{~N}}=\frac{530}{8}=65.25 \\
\mathrm{~b}_{\mathrm{yx}}=\frac{\frac{\sum \mathrm{dxdy}-\sum \mathrm{dx} \sum \mathrm{dy}}{\mathrm{~N}}}{\sum \mathrm{dx}^{2}-\frac{\left(\sum \mathrm{dx}\right)^{2}}{\mathrm{~N}}}=\frac{20-\frac{2(-6)}{8}}{50-\frac{2}{8}}=0.434
\end{gathered}
$$

Regression equation of Yon : $\mathrm{Y}-\overline{\mathrm{Y}}=\mathrm{b}_{\mathrm{yx}}(\mathrm{X}-\overline{\mathrm{X}})$

$$
Y=37.93+0.434 X
$$

when $\mathrm{X}=64.5$ then $\mathrm{Y}=69.923$
6. The equations of two regression lines are $7 x-16 y+9=0$ and $5 y-4 x-3=0$.

Find the coefficient of correlation and the means of $x \& y$.
Sol: Given equations are $7 x-16 y+9=0$
$5 y-4 x-3=0$ \qquad
(1) $\times 4$ gives $28 x-64 y+36=0$
(2) $\times 7$ gives $-28 x+35 y-21=0$

On adding we get $-29 y+15=0$
$y=0.5172$
from(1) $7 \mathrm{x}=16 \mathrm{y}-9$ which gives $\mathrm{x}=0.1034$
since regression line passes through (\bar{x}, \bar{y}) we have $\bar{x}=0.1034$
From(1) $x={ }_{7}^{16} y-{ }_{7}^{9}$
From (2) $y={ }_{5}^{4} \mathrm{x}+{ }_{5}^{3}$,
$\mathrm{r} \frac{\sigma_{\mathrm{x}}}{\sigma_{\mathrm{y}}}=\frac{16}{7}$ and $\mathrm{r}{ }_{\sigma_{\mathrm{x}}}^{\sigma_{\mathrm{y}}}=\frac{4}{5}$
Multiplying these 2equations, we get $\mathrm{r}^{2}=\begin{array}{ll}16 & 4 \\ 7 & 5\end{array}=\begin{aligned} & 64 \\ & 35\end{aligned}$
$r=\frac{8}{\sqrt{3} 5}$.
7. If $\sigma=\sigma=\sigma$ and the angle between the regression lines is Tan ${ }^{-1}{ }^{4}$ Find \mathbf{r}.

Sol: $\tan \theta=\frac{\sigma_{x} \sigma_{y}}{\sigma^{2}{ }_{x}+\sigma_{y}^{2}}\left(\frac{1-r^{2}}{r}\right)$
$=\frac{\sigma^{2}}{2 \sigma^{2}}\left(\frac{1-\mathrm{r}^{2}}{\mathrm{r}}\right)$
By data, $\theta=\operatorname{Tan}^{-1}\left(\frac{4}{3}\right)$.

$$
\begin{gathered}
\frac{1-r^{2}}{2 r}=\frac{4}{3} \\
3-3 r^{2}-8 r=0 \\
(3 r-1)(r+3)=0
\end{gathered}
$$

$r=\frac{1}{3}$ or -3
Since we cannot haver $=-3$
Thus $r=\frac{1}{3}$
8. Given the following information regarding a distribution $N=5, \overline{\mathrm{X}}=10, \overline{\mathrm{Y}}=20$, $\sum(X-Y)^{2}=100, \sum(Y-10)^{2}=160$. Find the regression coefficients and hence coefficient of correlation.
Sol: Here dx $=X-4, d y=\underset{\sum d x}{Y}-10$

$$
\begin{gathered}
=\mathrm{X}-4, \mathrm{dy}=\mathrm{Y}-10 \\
\overline{\mathrm{X}}=\mathrm{A}+\frac{\sum \mathrm{dx}}{\mathrm{~N}} \rightarrow 10=\mathrm{Y}+\frac{\sum \mathrm{dx}}{\mathrm{E}} \rightarrow \Sigma \mathrm{dx}=30(\text { here } \mathrm{A}=4) \\
\overline{\mathrm{Y}}=\mathrm{B}+\frac{\sum \mathrm{dy}}{\mathrm{~N}} \rightarrow 20=10+\frac{\sum \mathrm{dy}}{5} \rightarrow \sum \mathrm{dy}=50(\text { here } \mathrm{B}=10) \\
\mathrm{b}_{\mathrm{yx}}=\frac{\sum \mathrm{dxdy}-\frac{\sum \mathrm{dx} \sum \mathrm{dy}}{\mathrm{~N}}}{\left.\sum \mathrm{dx}\right)^{2}-\frac{\left(\sum \mathrm{dx}\right)^{2}}{\mathrm{~N}}}=\frac{-220}{-80}=2.75 \\
b_{\mathrm{xy}}=\frac{\sum \mathrm{dxdy}-\frac{\sum \mathrm{dx} \sum \mathrm{~d} y}{}}{\sum \mathrm{dy}^{2}-\frac{\left(\sum \mathrm{dy}\right)^{2}}{\mathrm{~N}}}=\frac{-220}{-340}=0.65
\end{gathered}
$$

Coefficient of correlation $r= \pm \sqrt{b_{x y} \times b_{y x}}=\sqrt{(0.65)(2.75)}=\sqrt{1.7875}=1.337$
9. Given that $X=4 Y+5$ and $Y=4 X+4$ are the lines of regression of X on Y and Y on Xrespectively. Show that $0<4 k<1$. If $k={ }_{16}^{1}$ find the means of the two variables and coefficient of correlation between them.
Solution: Given lines are $\mathrm{X}=4 \mathrm{Y}+5$

$$
\begin{equation*}
Y=K X+4 \tag{1}
\end{equation*}
$$

From (1) \& (2), $\begin{array}{r}\sigma_{\mathrm{o}}^{\sigma_{\mathrm{y}}}\end{array}=4$ and $\underset{\sigma_{\mathrm{x}}}{\sigma_{y}}=\mathrm{K}$
Multiplying these two equations we get $r^{2}=4 K$
Since $0 \leq r^{2} \leq 1$, we have $0 \leq 4 K \leq_{4}^{1}$
If $\mathrm{K}=\frac{1}{16}$ then we have $\mathrm{X}=4 \mathrm{Y}+5 \quad$ and

$$
Y=X / 16+4
$$

We get $\mathrm{X}-4 \mathrm{Y}-5=0$
$\frac{-\mathrm{X}}{4} 4 \mathrm{Y}-16=0$
Adding we get $3 \frac{X}{4}-21=0$

$$
X=28
$$

From(2), we get $Y=\frac{23}{4}$
The regression lines pass through (\bar{x}, \bar{y})
We get means $\bar{x}=28$ and $\bar{y}={ }_{4}^{23}$
We have $\mathrm{r}^{2}=4 \mathrm{k}=\frac{4}{16}=\frac{1^{4}}{4} \rightarrow \mathrm{r}= \pm \frac{1}{2}$
We consider positive value and take $r=\frac{1}{2}$
10.The difference between the ranks are $0.5,-6,-4.5,-3,-5,-1,3,0,5,5.5,0,-0.5$. For refracted ranks xandy. $\frac{\sum m\left(m^{2}-1\right)}{12}=3.5, r=0.44$. Find the number of terms.
Solution: Given difference $\left(d_{\mathrm{i}}\right) 0.5,-6,-4.5,-3,-5,-1,3,0,5,5.5,0,-0.5$

$$
\sum d_{\mathrm{i}}^{2}=156
$$

$$
\begin{aligned}
\text { Here } r & =1-6\left\{\frac{\sum \mathrm{~d}_{\mathrm{i}}^{2}+\frac{\sum \mathrm{m}\left(\mathrm{~m}^{2}-1\right)}{12}}{\left(\mathrm{~N}^{2}-\mathrm{N}\right)}\right\} \\
& =\frac{1-(159.5) 6}{\left(\mathrm{~N}^{2}-\mathrm{N}\right)}=1-\frac{957}{\mathrm{~N}^{2}-\mathrm{N}} \\
& \rightarrow 0.44=1-\frac{957}{\mathrm{~N}^{2}-\mathrm{N}} \\
& \rightarrow \mathrm{~N}^{2}-\mathrm{N}=1708.92 \\
& \rightarrow \mathrm{~N}=42
\end{aligned}
$$

Multiple Correlation:

In Multiple Correlation, the relationship between three or more variables is studied.
A dependent variable is indicated by X_{1} and independent variables by $X_{2}, X_{3}, X_{4}, X_{5}, \ldots$
The Coefficient of Multiple Correlation id denoted by R and necessary subscripts are added to it. Suppose there are three variables for X_{1}, X_{2} and X_{3}. Let X_{1} be the dependent variable depending on the independent variables X_{2} and X_{3}. Then multiple correlation is defined as follows:
$R_{1.23}=$ Multiple correlation coefficient with X_{1} as the dependent variable and X_{2}, X_{3} as independent variables.
$R_{2.13}=$ Multiple correlation coefficient with X_{2} as the dependent variable and X_{1}, X_{3} as independent variables.
$R_{3.12}=$ Multiple correlation coefficient with X_{3} as the dependent variable and X_{1}, X_{2} as independent variables.

Calculation of Multiple Correlation Coefficient:

The multiple correlation coefficients can be calculated using the following formulae,

$$
\begin{aligned}
& R_{1.23}=\sqrt[f]{ }^{2}+r^{2}-2 r_{12} r_{13} r_{23} \\
& R_{2.13}=f^{2}+r^{2}-2 r_{21} r_{23} r_{13} \\
& R_{3.12}=f^{2}+r^{2}-2 r_{31} r_{32} r_{12}
\end{aligned}
$$

Note:

1. Multiple Correlation Coefficient is non-negative. Its value lies between $0 \& 1$. It cannot assume a negative value.
2. $R_{1.23}=0$ Tr $r_{12}=0$ and $r_{13}=0$
3. $R_{1.23} \geq r_{12}, r_{13}, r_{23}$ and $R_{1.23} \geq r_{13}$
4. The position of the subscript to the right of dot does not make a difference i.e. $R_{1.23}=R_{1.32}$ and so on.
5. If $R_{1.23}=0$ then all the Multiple Correlations involving X_{1} are zero.

Problems

1. A single correlation coefficient between yield (x_{1}) and temperature (x_{2}) and rainfall (x_{3}) are given by $r_{12}=0.6, r_{13}=0.5, r_{23}=0.8$. Find the Multiple Correlation Coefficient $R_{1.23}$.
Sol: We know that, $R_{1.23}=\sqrt{\frac{\bar{r}^{2}+r^{2}-2 \mathrm{r}_{12 \mathrm{r} 13 \mathrm{r} 23}}{12}}$

$$
R_{1.23}=\sqrt{\frac{(0.6)^{2}+(0.5)^{2}-2(0.6)(0.5)(0.8)}{1-(0.8)^{2}}}
$$

$$
=\sqrt{\frac{0.36+0.25-0.48}{1-0.64}}=\sqrt{\frac{0.13}{0.36}}=0.6
$$

2. If $r_{12}=0.5, r_{23}=0.45$ and $r_{31}=0.3$ find $R_{3.12}$

Sol: Substituting these values in the formula

$$
\begin{gathered}
R_{3.12}=\sqrt{\frac{r_{31}^{2}+r_{32}^{2}-2 r_{31} r_{32} r_{12}}{12}} \\
R_{3.12}=\sqrt{ } \frac{(0.3)^{2}+(0.45)^{2}-2(0.3)(0.45)(0.5)}{1-(0.5)^{2}} \\
R_{3.12}=\sqrt{ } \frac{0.09+0.2025-2(0.0675)}{1-0.25}=\sqrt{\frac{0.4275}{0.75}}=\sqrt{ } 0.57=0.755
\end{gathered}
$$

3. Given the following data, compute Multiple Coefficient of Correlation of X_{3} on X_{1} and X_{2}.

X_{1}	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{1 4}$
X_{2}	$\mathbf{1 6}$	$\mathbf{1 0}$	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$
X_{3}	$\mathbf{9 0}$	$\mathbf{7 2}$	$\mathbf{5 4}$	$\mathbf{4 2}$	$\mathbf{3 0}$	$\mathbf{1 2}$

Sol: Here $\mathrm{n}=6, \bar{X}={ }^{48}=8, \underset{2}{\bar{X}}=\frac{42}{6}=7, \overline{X_{3}}=\frac{300}{6}=50$

	$x_{1}=X_{1}-\overline{\bar{X}_{1}}$			$x_{2}=X_{2}-\overline{X_{2}}$			$x_{3}=X_{3}-\overline{X_{3}}$					
S.No.	X_{1}	x_{1}	x_{1}^{2}	X_{2}	x_{2}	x_{2}^{2}	X3	x_{3}	x_{3}^{2}	$x_{1} x_{2}$	X2x 3	$x_{3} x_{1}$
1	3	-5	25	16	9	81	90	40	1600	-45	360	-200
2	5	-3	9	10	3	9	72	22	484	-9	66	-66
3	6	-2	4	7	0	0	54	4	16	0	0	-8
4	8	0	0	4	-3	9	42	-8	64	0	24	0
5	12	4	16	3	-4	16	30	-20	400	-16	80	-80
6	14	6	36	2	-5	25	12	-38	1444	-30	190	-228
	48	0	90	42	0	140	300	0	4008	-100	-582	720

$$
\begin{aligned}
& r_{12}=\frac{\sum x_{1} x_{2}}{\sqrt{\sum x_{1}^{2} \sum x_{2}^{2}}}=\frac{-100}{\sqrt{90 \times 140}}=-0.89 \\
& r_{13}=\frac{\sum x_{1} x_{3}}{\sqrt{\sum x_{1}^{2} \sum x_{3}^{2}}}=\frac{-582}{\sqrt{90 \times 4008}}=-0.97 \\
& r_{23}=\frac{\sum x_{2} x_{3}}{\sqrt{\sum x_{2}^{2} \sum x_{3}^{2}}}=\frac{720}{\sqrt{140 \times 4008}}=0.96 \\
& R_{3.12}=\sqrt{\frac{f_{31}^{2}+r_{32}^{2}-2 r_{31} r_{32} r_{12}}{1-r_{12}^{2}}}=\sqrt{\frac{(-0.97)^{2}+(0.96)^{2}-2(-0.97)(0.96)(-0.89)}{1-(-0.89)^{2}}} \\
& R_{3.12}=0.987
\end{aligned}
$$

Multiple Regression Analysis:

In multiple regression analysis, the effect of two or more independent variables on one dependent variable is studied.

Regression Equations:

The procedure for studying multiple regression is similar to the one for simple regression, with the difference that the other variables are added in the regression equation. If there are three variables X_{1}, X_{2} and X_{3} the multiple regression has the following form:
$X_{1}=a_{1.23}+b_{12.3} X_{2}+b_{13.2} X_{3}$
In the above equation, $a_{1.23}$ is the intercept made by the regression plane. It gives thevalue of the dependent variable when all the independent variables are zero. $b_{12.3}$ indicates the slope of the regression line of X_{1} on $X_{2} w h e n X_{3}$ is held constant. Similarly, $b_{13.2}$ indicates the slope of the regression line of X_{1} on X_{3} when X_{2} is held constant.
Normal Equations for Multiple Regression Equations:
(i) The regression plane of X_{1} on X_{2} and X_{3} is

$$
\begin{equation*}
X_{1}=a_{1.23}+b_{12.3} X_{2}+b_{13.2} X_{3} \tag{1}
\end{equation*}
$$

In the above equation, the values of $b_{12.3}$ and $b_{13.2}$ are determined by solving simultaneously the following three normal equations.
$\Sigma X_{1}=N a_{1.23}+b_{12.3} \Sigma X_{2}+b_{13.2} \Sigma X_{3}$
$\Sigma X_{1} X_{2}=a_{1.23} \Sigma X_{2}+b_{12.3} \Sigma X^{2}+b_{13.2} \Sigma X_{2} X_{3}$
$\sum X_{1} X_{3}=a_{1.23} \Sigma X_{3}+b_{12.3} \Sigma X_{2} X_{3}+b_{13.2} \Sigma X^{2}$
(ii) The regression plane of X_{2} on X_{1} and X_{3} is

$$
\begin{equation*}
X_{2}=a_{2.13}+b_{21.3} X_{1}+b_{23.1} X_{3} \tag{2}
\end{equation*}
$$

The normal equations for fitting the above equation are:
$\Sigma X_{2}=N a_{2.13}+b_{21.3} \sum X_{1}+b_{23.1} \sum X_{3}$
$\sum X_{1} X_{2}=a_{2.13} \sum X_{1}+b_{21.3} \sum X^{2}+b_{23.1} \sum X_{1} X_{3}$
$\sum X_{2} X_{3}=a_{2.13} \sum X_{3}+b_{21.3} \Sigma X_{1} X_{3}+b_{23.1} \Sigma X^{2}$
(iii) The regression plane of X_{3} on X_{1} and X_{2} is

$$
\begin{equation*}
X_{3}=a_{3.12}+b_{31.2} X_{1}+b_{32.1} X_{2} \tag{3}
\end{equation*}
$$

The normal equations for fitting the above equation are:
$\Sigma X_{3}=N a_{3.12}+b_{31.2} \Sigma X_{1}+b_{32.1} \Sigma X_{2}$
$\sum X_{1} X_{3}=a_{3.12} \sum X_{1}+b_{31.2} \sum X_{1}^{2}+b_{32.1} \sum X_{1} X_{2}$
$\sum X_{2} X_{3}=a_{3.12} \sum X_{2}+b_{31.2} \sum X_{1} X_{2}+b_{32.1} \sum X_{2}^{2}$

Problems:

Q. Find the multiple linear regression equation of X_{1} on X_{2} and X_{3} from the data given below:

X_{1}	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$
X_{2}	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{9}$
X_{3}	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$

Sol: The regression plane of X_{1} on X_{2} and X_{3} is

$$
\begin{equation*}
X_{1}=a_{1.23}+b_{12.3} X_{2}+b_{13.2} X_{3} \tag{A}
\end{equation*}
$$

where the values of the three constants are obtained by solving the following three normal equations.
$\Sigma X_{1}=N a_{1.23}+b_{12.3} \Sigma X_{2}+b_{13.2} \Sigma X_{3}$
$\sum X_{1} X_{2}=a_{1.23} \sum X_{2}+b_{12.3} \Sigma X_{2}^{2}+b_{13.2} \Sigma X_{2} X_{3}$
$\sum X_{1} X_{3}=a_{1.23} \sum X_{3}+b_{12.3} \sum X_{2} X_{3}+b_{13.2} \sum X_{3}^{2}$

S.No.	X_{1}	X_{2}	X_{3}	$X_{1} X_{2}$	$X_{2} X_{3}$	$X_{3} X_{1}$	X_{1}^{2}	X_{2}^{2}	X_{3}^{2}
1	2	3	4	6	12	8	4	9	16
2	4	5	6	20	30	24	16	25	36
3	6	7	8	42	56	48	36	49	64
4	8	9	10	72	90	80	64	81	100
$\sum=$	20	24	28	140	188	160	120	164	216

Substituting the values in the normal equations, we get
$6 a_{1.23}+24 b_{12.3}+28 b_{13.2}=20$
(i)
$24 a_{1.23}+164 b_{12.3}+188 b_{13.2}=140$
(ii)
$28 a_{1.23}+188 b_{12.3}+216 b_{13.2}=160$.
(iii)

Multiplying equation (i) by 4 and subtracting it from the equation (ii), we get:
$68 b_{12.3}+76 b_{13.2}=60$ \qquad (iv)

Multiplying equation (ii) by 7 and equation (iii) by 6 , we get:
$168 a_{1.23}+1148 b_{12.3}+1316 b_{13.2}=980$
$168 a_{1.23}+1128 b_{12.3}+1296 b_{13.2}=960$
Subtracting (vi) from (v), we obtain:
$20 b_{12.3}+20 b_{13.2}=20$
Multiplying equation (iv) by 5 and equation (vii) by 7 we get:
$340 b_{12.3}+380 b_{13.2}=300$ (viii)
$340 b_{12.3}+340 b_{13.2}=340$ (ix)

Subtracting (ix) from (viii), we have $40 b_{13.2}=-40 \Rightarrow b_{13.2}=-1$
Substituting the value of $b_{13.2}$ in equation (vii), we have
$20 b_{12.3}-20=20$ 团 $b_{12.3}=2$

$$
\ldots \ldots \ldots \text { (xi) }
$$

Substituting the values of $b_{12.3}$ and $b_{13.2}$ in equation (i), we get
$6 a_{1.23}+48-28=20 \Rightarrow a_{1.23}=0$
Substituting the values of $a_{1.23}=0, b_{12.3}=2$ and $b_{13.2}=-1$ in equation (A)
The required regression equation of X_{1} on X_{2} and X_{3} is $X_{1}=0+2 X_{2}-X_{3} \Rightarrow X_{1}=2 X_{2}-X_{3}$.

TUTORIAL QUESTIONS

1. The heights of mothers \& daughters are given in the following table. From the 2 tables of regression estimate the expected average height of daughter when the height of the mother is 64.5 inches.
2.

Ht. of Mother(inches)	62	63	64	64	65	66	68	70
Ht. of the daughter(inches)	64	65	61	69	67	68	71	65

The equations of two regression lines are $7 \mathrm{x}-16 \mathrm{y}+9=0$ and $5 \mathrm{y}-4 \mathrm{x}-3=0$.

Find the coefficient of correlation and the means of $x \& y$.
3. The marks obtained by 10 students in mathematics and statistics are given below. Find the coefficient of correlation between the two subjects and the two lines of regression

Marks in mathematics	25	28	30	32	35	36	38	42	45	39
Marks in Statistics	20	26	29	30	25	18	26	35	46	35

4. Fit a straight line $\mathrm{Y}=a_{0}+a_{1} \mathrm{X}$ for the following data and estimate the value of Y when

$$
\mathrm{X}=25
$$

X	0	5	10	15	20
Y	7	11	16	20	26

5. Find the rank correlation for the following indices of supply and price of an article:

PRICE	80	100	102	91	100	111	109	100	99	104	111	102	98	111
INDEX	124	100	105	112	102	93	99	115	123	104	99	113	121	103

ASSIGNMENT QUESTIONS

2. Fit a curve of the form $Y=a+b X$ by the method of least squares for the following data:

X	1	2	3	4	5
Y	5	2	4.5	8	12.5

1
3. The marks obtained by 10 students in two subjects are given below. Find the correlation coefficient and lines of regression

Subject 1	48	75	30	60	80	53	35	15	40	38
Subject 2	44	85	45	54	91	58	63	35	43	45

4. The following table are the marks obtained by 12 students in economics and statistics:

Economics(X)	78	56	36	66	25	62	75	82
62Statistics(Y)	84	44	51	58	60	58	68	62

Obtain the regression lines.
5.Find the karlpearson's coefficient of correlation for the paired data:

wages	100	101	102	100	99	97	98	96	95	102
Cost of living	98	99	99	95	92	95	94	90	91	97

6. The equations of two regression lines are $7 x-16 y+9=0$ and $5 y-4 x-3=0$.

Find the coefficient of correlation and the means of $x \& y$.

